

Handheld Computing
This author outlines how personal digital assistants (PDAs) are
used in the military, future uses, procurement considerations,
developing PDA resource material, and more.
by Col. Kenneth L . Alford, Ph.D.

How to Secure Windows PCs and Laptops
Here are seven defensive strategies to reduce the risk from
hardcore spyware invading your home and small business systems.
by Terry Bollinger

How and Why to Use the Unified Modeling Language
This article addresses the Unified Modeling Language and its
purpose, constructs, and application to defense software
development applications.
by Lynn Sanderfer

Effective Practices for Object-Oriented System
Software Architecting
This author describes some typical pitfalls of object-oriented
development and recommends a number of architectural practices
that will help programs avoid or mitigate these dangers.
by Rich McCabe and Mike Polen

Identifying Your Organization’s Best Practices
Here is how three different organizations used a combination of
quantitative measures and qualitative values to identify their best
practices, then used these results to improve their performance.
by David Herron and David Garmus

Application-Specific Knowledge Bases
This author recommends ways to capture and record specific
issues that are encountered and resolved during software
development to build a knowledge base.
by Dr. Babak Makkinejad

Process Therapy
Drawing on personal experience, this author relates how his
recovery from a spinal cord injury follows process improvement
in an unhealthy organization as it moves toward recovery.
by Paul Kimmerly

Reality Reality ComputingComputing

2 CROSSTALK The Journal of Defense Software Engineering June 2005

4

9

13

18

22

26

29

Best Best PracticesPractices

Cover Design by
Kent Bingham.

3

12

28

31

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher

Coming Events
Web Sites

More Online From CrossTalk

BackTalk

CrossTalk
OC-ALC/ MAS

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk and pro-
vides both editorial oversight and technical review.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address. You may e-mail us at <crosstalk.staff@
hill.af.mil> or use the form on p. 25.

OO-ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820
(801) 777-5555

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior
to publication. Please follow the Author Guidelines,
available at <www.stsc.hill.af.mil/crosstalk/xtlkguid.
pdf>. CROSSTALK does not pay for submissions.
Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other
publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or are
endorsed by, the U.S. government, the DoD, or the
STSC.All product names referenced in this issue are
trademarks of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk> or e-mail <stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyySoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

OpenOpen FForumorum

From the Sponsor

It truly amazes me how technology is woven into the tapestry of our culture. The latest
threads of American and global culture are portable computing devices. A year ago I

would have never believed that a silly thing called Blackberry was capable of making me
do work at 10 p.m. on a regular basis. Ten years ago, none of us knew that it was possi-
ble to survive life without a cell phone. Sadly, it also amazes me how slowly the same tech-
nology permeates our warfighters’ culture, thus capability. The reasons include challenges
in securing wireless data, interoperability issues, operating environments, reliability,

bureaucracy, and many more. It strikes me as odd that a casual weekend fisherman can see a twig
or ditch in 3-D color on depth finders, check the latest weather information with animated Doppler
radar, mark his fishing targets within a couple of feet using an onboard relative global positioning
system, pull up a navigation map to safely return to the landing, call his wife to coordinate boat
docking, and order replacements for all the lures he snagged while waiting for his trailer, yet many
of our warfighters don’t have the breadth of a fisherman’s capability in their hands. As you read
this month’s CrossTalk and think about portable computing devices, ask yourself, “How can
we do our part to effectively field this technology?”

Technology Fields Too Slowly

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

June 2005 www.stsc.hill.af.mil 3

From the Publisher

This month’s CrossTalk focuses on information you should know whether you’re
buying a personal digital assistant, protecting your home computer, designing or writ-

ing programs, or improving your processes. It is interesting to watch some technologies
fade away while others continue to evolve. It appears only the strong survive, but the
required strengths vary from technology to technology. In the debate over video formats,
many believed Beta was better, but VHS had a stronger market niche. Today, basic cell
phones are passé – everyone wants a picture phone (or so the commercials imply).

We asked Col. Kenneth L. Alford to write his article, Handheld Computing, due to the interesting
work at the U.S. Military Academy where he taught. Examples include network analysis that looks
for new ways to automatically recognize computer network attacks, and a computerized mapping
project that shows how digital mapping, terrain, and unit data can be integrated to show warfight-
ers a more complete picture on the ground. Terry Bollinger’s article, How to Secure Windows PCs and
Laptops, was provided to help both home computer users and companies better secure their com-
puters. We also target more advanced development with Rick McCabe’s and Mike Polen’s article,
Effective Practices for Object-Oriented System Software Architecting. Lynn Sanderfer, David Herron, David
Garmus, Dr. Babak Makkinejad, and Paul Kimmerly also provide basic practices and advice aimed
at both novice and advanced programmers. Since only the strong survive in today’s fast-moving
technologies, which do you want to keep and which do you want to do away with?

Computing Permeates Our Society

Elizabeth Starrett
Associate Publisher

Note of Appreciation: We at CrossTalk extend our appreciation to Walt Lipke as he retires from government service at the
end of June. Throughout the years, Mr. Lipke has been a great supporter of CrossTalk via the articles he shared and his key role
in helping us secure funds for CrossTalk until our new sponsors started their support. We will miss Mr. Lipke’s support in the
government sector, but look forward to more words of wisdom via future CrossTalk articles.

4 CROSSTALK The Journal of Defense Software Engineering June 2005

Computing power continues to increase
in capacity and decrease in cost and

size. Today’s low-cost handheld comput-
ers and personal digital assistants (PDAs)
allow computing resources to be almost
ubiquitous. This article illustrates how
handheld computing is changing the way
some Department of Defense (DoD)
organizations do business and discusses how
you may take advantage of the capabilities
that are available through this technology.

Example Handheld Programs
PDAs, which are defined in DoD
Directive 8100.2 as “a generic term for a
class of small, easily carried electronic
devices used to store and retrieve infor-
mation” [2], were at one time viewed as lit-
tle more than novelties. Yet, with approxi-
mately 20 million PDAs shipped last year,
business and government groups continue
to find new ways to use them.

Here are some of the many ways that
PDA technology is currently being used
within the DoD:
• The Pocket-Sized Forward Entry

Device (PFED) is a ruggedized PDA
designed for forward observers,
artillery fire direction, and target acqui-
sition missions. With built-in laser
range-finding and global positioning
system (GPS) hardware, PFED users
can issue a call-for-fire request in less
than 10 seconds – compared to 45 sec-
onds or more when using other sys-
tems [3].

• Security guards at Wright-Patterson
Air Force Base use PDAs at the gates
and on patrols. Prior to receiving
PDAs, guards were provided thick
binders containing daily event lists
with guest and sponsor contact infor-
mation. Only three of the 10 gates on
base received a binder each day.
Visitors who arrived at one of the
other seven gates had to wait for
someone to confirm if they were
allowed on base. Now each guard has a

copy of the complete daily list. Using
their PDAs, guards can also provide
visitors with maps and directions to
their destination on base [4].

• The Commanders Digital Assistant is a
ruggedized PDA that is being fielded
to combat troops; it has already seen
field use with the 82nd Airborne in

Iraq. It integrates dismounted troops
into the Blue Force Tracking system,
enables commanders to distribute
orders, and provides several additional
capabilities [5, 6].

• The Coast Guard uses PDAs to help
automate the task of inspecting fishing
vessels. Based on answers to 16 ques-
tions, the PDA generates a customized
checklist of safety requirements for
firefighting, lifesaving, and bridge
equipment appropriate to each vessel.
As boarding officers click on each

requirement, the PDA displays detailed
specifications. Officers then check off
whether items are found to be satisfac-
tory or are in violation of federal law.
Instead of laboring to determine
whether the law requires a particular
ship to carry one of three different
types of life rafts, an inflatable buoyant
apparatus, life float, or nothing at all,
boarding officers, with PDAs in hand,
now spend their energy on, for exam-
ple, inspecting life rafts to ensure that
they are properly set up to release
should a ship sink [7].

• In 2004, the Marine Corps awarded a
$2.9 million contract to purchase
rugged PDAs (RPDAs) designed to
increase tactical awareness. This fol-
lows a previous $12 million award that
supplied RPDAs to several branches
of the U.S. military. These devices
offer navigation, tactical digital mes-
saging, remote radio control, GPS,
wireless local area network (LAN) and
Bluetooth capabilities [8].

• All West Point cadets purchase a PDA.
Students and faculty members use
PDAs to store schedules, class assign-
ments, reference documents, and other
instructional materials. PDAs have also
been incorporated into some senior
engineering design projects.

• Army medical units in Iraq use PDAs
to collect patient information.

• Los Alamos National Laboratory’s
researchers have developed a PDA
radiation detector [4].
There are many other programs and

projects throughout the DoD that could
also be listed. Many service members even
receive a PDA as part of their unit’s stan-
dard issue.

Benefits
As the previous examples illustrate, there
are many ways to effectively incorporate
PDAs into the workplace and many rea-
sons for doing so. PDAs offer a variety of

Handheld Computing
Col. Kenneth L. Alford, Ph.D.

U.S. Army

Handheld computers, especially personal digital assistants (PDAs), are increasingly being used throughout the Department
of Defense. This article highlights some of the ways that PDAs are used today and are envisioned for the future. It outlines
some of the considerations involved in a PDA procurement, discusses four tools for developing PDA resource materials – pro-
gramming tools, hypertext markup language- and eXtensible markup language-based tools, text tools, and calendar tools –
outlines some of the benefits and challenges associated with using PDAs, and shares several lessons learned.

“… I sat down with a
group of Marines in

California who had just
returned from the Iraq

war. At one point in our
conversation, I asked the
Marines in the room to
raise their hands if they

had either a cellular
telephone or a PDA.

Every hand went up.”
—Vice Adm. Herbert A. Browne,

U.S. Navy (Ret.) [1]

Reality Computing

Handheld Computing

June 2005 www.stsc.hill.af.mil 5

advantages over other automated solu-
tions. For example, given the right work
environment, PDAs can do the following:
• Increase worker productivity.
• Improve customer support.
• Reduce time spent searching for infor-

mation.
• Allow users to take computing power

and large amounts of information to
places where they could not previous-
ly go.

• Increase accuracy.
• Save lives.
This is because PDAs are versatile,
portable, inexpensive, and easy to use.

Retired Vice Adm. Herbert A. Browne
recently noted the following:

Virtually all of the lessons learned
from Operation Iraqi Freedom
include comments about the speed
of the forces’ advance exceeding
the speed with which line-of-sight
communications could keep up.
Command and control (C2) of our
forces was challenged by this rapid
mobility, and wireless technology is
viewed as the most likely solution
to getting collected information
and C2 down to the tactical, trigger-
pulling level. [1]

PDAs can offer solutions to some of
those challenges.

Concerns
Like other forms of automation, intro-
ducing PDAs into the work environment
comes with a potential downside as well.
Here are some of the concerns associated
with using PDAs:
• PDAs have limited data input capabili-

ties, especially for typing-intensive
work.

• There are additional maintenance and
cost requirements.

• Non-ruggedized PDAs can be easily
broken.

• PDAs may introduce additional train-
ing costs in both time and dollars.

• It is difficult for many users to separate
business and personal use of PDAs.

• There are numerous security concerns.

Security
PDAs can introduce multiple security
challenges. Due to their small size, for
example, PDAs have an increased risk of
loss or theft. PDAs that wirelessly connect
to government networks create additional
obvious security concerns.

On April 14, 2004, Deputy Secretary
of Defense Paul Wolfowitz signed
Defense Department Directive 8100.2

“Use of Commercial Wireless Devices,
Services, and Technologies in the
Department of Defense (DoD) Global
Information Grid (GIG)” [2]. The direc-
tive’s guidelines apply to all commercial
wireless devices (including PDAs). It
establishes “policy and assigns responsi-
bilities for the use of commercial wireless
devices, services, and technologies in the
DoD GIG.”

Hardware Considerations
The use of business and government
(enterprise) PDAs has been on the rise for
the past several years. The Gartner
Group’s research estimates that more than
4 million enterprise PDAs were in service
during 2004, and they estimate that num-
ber will rise to 6 million by 2008. At the
same time, the total cost of ownership
(TCO) per year of a business PDA has
dropped 28 percent – from almost $2,700
in 1999 to $1,946 in 2004 [9]. (These fig-
ures are based on a two-year amortization
rate.)

The popularity of PDAs has resulted
in a wide variety of devices being offered
in the marketplace. Government users
considering PDA purchases have several
decisions they must make regarding the
device they will use. Decisions must be
made regarding the processor, operating
system, wireless technologies, screen char-
acteristics, battery life, expansion memory,
input options, and durability (business ver-
sus ruggedized models), among other
questions.

Processor
Most PDA processors are made by Intel,
Samsung, or Texas Instruments; PDA
processor speeds currently range from
16MHz to over 500MHz.

Operating System
Most PDAs run on one of the following

operating systems:
1. Palm OS (the latest version is Palm

OS Cobalt, previously known as Palm
OS 6).

2. Windows Mobile (which comes in
three profiles: Pocket PCs, Pocket PC
Phone Edition, and Windows Mobile
for Smartphones).

3. Symbian OS (the leading operating
system for Smartphones).

4. RIM (used in Blackberry devices).

Wireless Technologies
An increasing number of PDAs are being
sold with one or more of these wireless
technologies [10]:
1. Bluetooth. This is an industry specifi-

cation for wireless communications
that uses short-range radio technology.
Bluetooth version 1.2 throughput is
typically in the 400-500 kilobytes per
second (Kbps) range. Bluetooth does
not have any native support for
Internet Protocol (IP) that means it
does not currently support tactical
computer processor (TCP)/IP or
wireless LAN applications very well. It
is better suited for connecting PDAs,
cell phones, and PCs during short
intervals. Bluetooth certification
means that an individual product has
been tested for compliance with the
Bluetooth specification; it does not
guarantee that it will be compatible
with other Bluetooth-enabled prod-
ucts.

2. 802.11/ Wireless LAN (WLAN). On
an 802.11 WLAN, most PDAs adhere
to the 802.11b specification that pro-
vides 11 megabytes per second (Mbps)
transmission rates and throughput in
the 4-6 Mbps range.

3. Global System for Mobile commu-
nications (GSM), General Packet
Radio Service (GPRS), and GSM
Evolution. The GSM is a European
digital cellular phone standard. GSM
1900, the North American version of
GSM, generally provides throughput
in the 56 Kbps (or less) range. GPRS is
an overlay to GSM networks; the max-
imum speed is theoretically 171.2
Kbps, but actual user experience is
usually limited to 56 Kbps or less.
GSM Evolution is a radio interface
technology for mobile services; while
data throughput rates of approximate-
ly 384 Kbps are theoretically possible,
users more frequently report through-
put closer to 64 Kbps.

4. Code-Division Multiple Access
(CDMA). This is a spread-spectrum
digital cellular technology. It was first
used during World War II and became

“The Commanders
Digital Assistant is a
ruggedized PDA that

is being fielded to
combat troops; it has
already seen field use

with the 82nd
Airborne in Iraq.”

Reality Computing

6 CROSSTALK The Journal of Defense Software Engineering June 2005

commercially available in 1995. The
latest CDMA standard provides voice
and data rates up to 2 Mbps.

Screen Characteristics
The screen size, resolution, backlighting
capability, and color should all be consid-
ered during any purchase evaluation.

Battery Life
Battery life is an important element in
determining which PDA to purchase.
Nearly all PDAs today offer rechargeable
batteries. The two main battery types are
lithium ion and lithium polymer. Most
PDAs offer a rechargeable lithium ion
battery.

As would be expected, actual battery
life depends on a wide variety of factors:
screen size, resolution, use of backlight-
ing, data intensity of applications, etc.

Expansion Memory
While PDAs have generally offered a rel-
atively small amount of memory (in the
8-64 megabytes range), new models are
offering 256 megabytes with forecasts
and expectations for more. Data-inten-
sive PDA applications often require addi-
tional memory, and most PDAs offer at
least one external expansion slot for addi-
tional memory. Several memory card
expansion options are available [9]:
1. Secure Digital (SD) cards are small

and are used in PDAs, digital video
camcorders, digital cameras, audio
players and mobile phones. Cards are
currently available to store up to 1
gigabyte.

2. Secure Digital Input/Output
(SDIO) provides improved multime-
dia and device management. SDIO
cards generally support PDA periph-
erals (such as GPS receivers, Wi-Fi,
digital cameras, and Bluetooth).

3. Multimedia Memory Cards
(MMC) expansion slots are support-
ed by many PDAs and are available in
storage sizes up to 1 gigabyte.

4. Compact Flash (CF), at one time,
was the most popular PDA expansion
card format. Some PDAs allow users
to add up to 6 gigabytes of expansion
memory.

5. Memory Stick. This is a proprietary
format (from Sony). Memory sticks
currently have a storage capacity up to
2 gigabytes.

Input Options
In addition to standard PDA touch-screen
data entry (either through point-and-
touch or PDA graffiti recognition soft-
ware), many PDAs offer small built-in or

attachable QWERTY (standard) key-
boards. At least one company has devel-
oped an exciting prototype technology:

… that lets users of PDAs and
similar mobile devices put data
into their handheld systems simply
by typing on an image of a stan-
dard-size keyboard projected onto
a desktop or other surface. The
electronic perception technology cap-
tures the user’s finger motions via
emitted light photons that form 3-
D real-time images that are then
processed and translated into key-
strokes. [12]

Durability
Ruggedized PDAs (also known as indus-
trial handhelds) must meet additional
specifications. For example, they must be

able to survive significant drops (from
one meter or greater) onto a concrete
floor, water tests, heat and cold tests, and
tolerance for electromagnetic shock.
Ruggedized handhelds generally cost
between 50 percent and 200 percent
more than business PDAs.

The Gartner Group estimates that the
TCO in 2004 of a ruggedized PDA was
$2,002 per year (almost the same as the
$1,946 TCO for a business PDA) [9].
These figures are based on a three-year
product life, but many ruggedized users
keep their PDAs longer than three years,
which lowers the ruggedized TCO cost.
Because they are designed to withstand
rougher treatment, ruggedized PDAs
tend to have a longer useful life than
business PDAs.

Convergence
Digital convergence – defined here as the

coming together of two or more technolo-
gies – is rapidly occurring in the field of
handheld computing. In many cases,
PDAs and cellular phones have merged
and are sold in a single device known as a
Smartphone. In the third quarter of
2004, Smartphone shipments exceeded
those of PDAs (3.96 million to 2.86 mil-
lion units) [13].

New devices, new capabilities, and
new technology will continue to appear.
The DoD should embrace and incorpo-
rate, whenever possible, the new oppor-
tunities that these advances will provide.

Developing PDA Tools
PDAs are increasingly being used
throughout the DoD, and this is especial-
ly true at many educational and training
locations. For example, at the U.S.
Military Academy, PDAs are becoming
an effective instrument in an instructor’s
toolkit.

There are several no-cost, low-cost,
and commercial products available to
increase the functionality and usability of
personal digital assistants in work and
training settings. There are four basic
ways that PDA resource materials can be
developed: (1) programming tools, (2)
hypertext markup language (HTML)- and
eXtensible markup language (XML)-
based tools, (3) text tools, and (4) calen-
dar tools.

Programming Tools
Several software development environ-
ments exist for creating applications for
personal digital assistants. Introductory
information can be found online at
numerous Web sites1. Java – whether in
the form of Kilobyte Virtual Machine
(KVM), Kawt (an implementation of the
Abstract Window Toolkit for the KVM),
J9 (IBM’s virtual machine that is support-
ed by Visual Age Micro Edition), or any
number of other flavors – is currently
one of the most popular languages for
programming handheld applications. C,
C++, versions of Basic and Visual Basic,
Compact Application Solution Language
(CASL), Pascal, Forth, Scheme, Smalltalk,
and several other proprietary scripting
tools are also available [14].

Application development is appropri-
ate when existing PDA software
resources cannot adequately satisfy exist-
ing requirements. At West Point, for
example, plebes (freshmen) must be able
to recite the number of days that remain
until each football game, spring leave,
graduation, and other notable cadet activ-
ities. Faculty in the Department of
Electrical Engineering and Computer

“Every decade has some
word associated with it.
In the ’80s, it was the
PC. In the ’90s, it was

the Internet. For the rest
of this decade, the key

word is going to be
convergence.”

—Steve Case, AOL Time Warner,
Chairman of the Board [11]

Handheld Computing

June 2005 www.stsc.hill.af.mil 7

Science created a small PDA program
called The Days that automates and sim-
plifies this daily ritual for freshmen stu-
dents.

HTML- and XML-Based Tools
HTML and XML files can be easily for-
matted to be viewed on a PDA. There are
numerous ways this capability can be
used to support teaching and other mili-
tary training. For example, instructors at
West Point have formatted all of the fol-
lowing into HTML and/or XML pages
to be read on PDAs: course syllabus and
guidelines, course schedules, reading
assignments, project and other course
assignment files, supplemental reading
assignments, class handouts, review
information for exams, self-administered
non-graded quizzes, Web pages, Web
sites, other HTML documents, and stu-
dent projects. In other work environ-
ments, it may be appropriate to place
copies of regulations, field manuals,
directives, maps, and directions on PDAs.

Two of the most popular programs
for transforming Web-ready pages into
PDA documents are Plucker2, a freeware
program, and AvantGo3, a commercial
product. Plucker software, for example,
allows users to easily create and update
PDA-readable versions of a single Web
page, multiple Web pages, or entire Web
sites. Users can configure graphic quality
and size, timing of file updates, depth of
search, and numerous other options.

Text Tools
As an alternative to formatting text into
an HTML or XML formatted document,
there are several text-based tools, each
with its own unique file format that can
be used to develop PDA-readable docu-
ments.

There are several no-cost and low-
cost alternatives available for developing
PDA documents. One of the quickest
and easiest ways to send text and small
documents to many PDAs is to use the
Memo Pad feature found in Microsoft
Outlook and several PDA synchroniza-
tion programs. Using Memo Pad is a very
basic solution, but it does have the advan-
tage that students can modify original
text they receive. Memo notes are useful
when students are asked to modify and
return a document or assignment.

To obtain increased document func-
tionality, instructors can turn to freeware
or commercial software products, such as
PalmReader4 or Adobe Acrobat5.
PalmReader provides all of the software
and instructions necessary to create fin-
ished PDA-readable documents with text

and limited graphics. Copies of the read-
er software are available for the
Windows, Macintosh, Palm OS, and
Windows Mobile operating systems. An
advantage of using PalmReader or
Adobe Acrobat is that the same docu-
ment can be read on platforms with all
four supported operating systems.
PalmReader uses a unique tag-based
description language that supports text
styles, links, graphics, sidebars, footnotes,
bookmarking, notes, and other features.

PalmReader, Adobe Acrobat, and a
variety of similar programs can be used
to create functional and extremely useful
documents and electronic books for
handheld computers.

Calendar Tools
The ability of handheld computers to hot
synch with personal information man-
agement software, calendar software, and

other information located on personal
computers makes calendar and schedule
applications a natural target for course-
work development.

Faculty and students at the U.S.
Military Academy use Course Hour
Appointment for Outlook Scheduler
(CHAOS) – a Microsoft Visual Basic pro-
gram for entering lesson dates, titles, and
assignment information into their per-
sonal and handheld computers. CHAOS-
generated files are loaded into the
Microsoft Outlook calendar and then
synchronized with the calendar program
on student and faculty PDAs. Faculty and
students at the U.S. Military Academy
have used this method to create and dis-
tribute calendars and schedules for stu-
dent clubs, student project teams, and a
variety of other groups.

Lessons Learned
Instructors at the U.S. Military Academy
have been creating PDA instructional

content for several years. Here are some
of the lessons they have learned in devel-
oping applications and resources for
PDAs:
• Be aware of size constraints. PDA

storage capacity is rapidly improving,
but it is still a constrained develop-
ment environment.

• Use graphics sparingly and ensure
that they have been optimized.

• Double-check everything, especially
links and graphics, before you distrib-
ute PDA programs and products.

• Whenever possible, provide non-
handheld alternatives for resources
you develop for PDAs.

• Recognize different PDA operating
systems, screen resolutions, and color
capability. Reference to specific colors
in images, for example, is meaningless
for users who have a 16-grayscale
PDA screen.

• Eliminate screen scrolling on PDAs
whenever possible; it is tedious and
time-consuming.

• Limit the number of PDA file-read-
ing programs you require users to
load on their PDA. PalmReader,
Plucker, and Adobe Acrobat, for
example, are all excellent programs,
but requiring users to load all of them
in order to read a wide variety of
materials could require an unreason-
able amount of valuable PDA memo-
ry space.

• Concentrate first and foremost on
usability. The best content available
can be rendered almost useless by a
poor presentation.

Future Handheld Programs
Numerous DoD handheld computing
applications are currently being devel-
oped. Here is a glimpse of some of the
applications that we should see in the
future:
• The Protect America system is being

designed to give military commanders
and force protection personnel from
U.S. Customs, the Secret Service, the
U.S. Coast Guard, the Transportation
Security Administration, the Federal
Bureau of Investigation, and others a
common information-sharing tool [15].

• The Seismic Landmine Detection
System would send seismic waves
through a minefield, slightly moving
the earth and items buried beneath. A
radar sensor, connected to a PDA,
will measure ground displacement to
locate plastic anti-personnel or anti-
tank mines [16].

• Technologies are being developed
that will enable computers and PDAs

“It is important to
realize that the next
generation of federal

workers will not
remember a time when

computers and
connected environments

did not exist.”

Reality Computing

“to accept gestures, motions, speech,
and facial expressions as data input
methods … designed to facilitate
silent troop communication during
combat” [11].

• PDAs are being tested to serve
nuclear, biological, and chemical
detection roles in future conflicts.
Many other exciting applications will

be delivered, as well.

Conclusion
A great deal is being written about the
large personnel turnover that the federal
government will experience during the
next decade as the existing workforce
retires in substantial numbers. It is
important to realize that the next genera-
tion of federal workers will not remem-
ber a time when computers and connect-
ed environments did not exist. A recent
report from the Gartner Group estimates
(with an 80 percent probability rating) the
following by 2007:

Seventy percent of all levels of
Western governments will double
the turnover of new employees due
to worker dissatisfaction with the
technology infrastructure. … The
generation that is about to enter the
government workforce thinks dif-
ferently. They use cellular phones
and instant messaging as a matter of
course. Facts are available in sec-
onds from online resources.
Projects are done in teams. High
school and college campuses have
wireless access in common areas.
Dormitory rooms have broadband
access. In the meantime, govern-
ments treat IT [information tech-
nology] as overhead, and consider
Internet access too easy to abuse
and instant messaging a time waster.
However, the incoming workforce
expects to be able to work anywhere,
anytime. It is accustomed to receiv-
ing information in seconds, not in
quarterly reports. It will not work in
an environment that cannot sup-
port these requirements. Economic
situations or a sense of responsibil-
ity may draw workers to govern-
ment jobs, but unless the technolo-
gy environment changes the next
generation of workers will not per-
form well and will be highly dissat-
isfied. As a result, government
agencies will lose access to this pool
of talent. [17]

Defense personnel should be able to
use the best tools available to complete

their mission. In many instances, the best
tool available will be a handheld comput-
ing device such as a PDA. Security con-
cerns regarding the use of PDAs can and
must be resolved.u

References
1. Browne, Herbert A. “Wireless Tech-

nologies Are the New Information
Revolution.” Signal Dec. 2003 <www.
afcea.org/signal/articles/anmviewer.
asp?a=46>.

2. Department of Defense. “DoD
Directive 8100.2: Use of Commercial
Wireless Devices, Services, and Tech-
nologies in the Department of De-
fense (DoD) Global Information Grid
(GIG).” Washington: DoD, 14 Apr.
2004. <www.dtic.mil/whs/directives/
corres/html/81002.htm>.

3. “Pocket Sized Forward Entry Device
(PFED).” Defense Update 2005:
Issue 1 <www.defense-update.com/
products/p/pfed.htm>.

4. Lilie, Cheryl. “Personal Assistants Aid
Security.” Signal. Feb. 2004. <www.
afcea.org/signal/articles/anmviewer.
asp?a=10>.

5. “Land Warrior System.” Defense
Update. <www.defense-update.com/
features/du-4-04/land-warrior-2.
htm>.

6. “Survival of the Fittest,” Jane’s
Defense Weekly 21 May 2003: 25-28.

7. Rossett, Allison, and Erica Mohr.
“Performance Support Tools. The
U.S. Coast Guard Uses PSTs …”
Business and Management Practices,
58.2 (Feb. 2004): 34.

8. “Marines to Receive Rugged PDAs.”
Defense Daily International 4.9 (12
Mar. 2004):1.

9. Redmon, P. “Total Cost of
Ownership Is Down for Business
PDAs.” Gartner Research Note
COM-22-1757 21 Apr. 2004.

10. Troni, Federica, and Roberta Cozza.
“Personal Digital Assistants: Over-
view.” Gartner Technology Overview
DPRO-90774. 29 Mar. 2004.

11. Blosch, Marcus. “Convergence:
Fusion or Fantasy?” Gartner Report
Jan. 2002.

12. Vijayan, Jaikumar. “User Interfaces.”
Computerworld 38.32 (Aug. 2004): 28.

13. Gartner Group. “3Q04 Smartphone
Shipments Overtake PDAs.” Gartner
Dataquest Alert 22 Dec. 2004.

14. Jones, N. “Choosing a Pocket
Programming Language,” Gartner
Research Note DF-16-1282 11 June
2002.

15. Kellogg Jr., Joseph K., and Mark
Powell. “Protecting America With

Information Technology.” Signal June
2003. <www.afcea.org/signal/articles/
anmviewer.asp?a=207>.

16. Lilie, Cheryl. “Land Mine Detector
Makes Waves.” Signal July 2004.
<www.afcea.org/signal/articles/anm
viewer.asp?a=222>.

17. Baum, C., et al. “Predicts 2005:
Government Ramps Up IT.” Gartner
Commentary 1 Nov. 2004.

Notes
1. See <www.onjava.com/pub/-a/on

java/2001/03/15/java_palm.html>,
for example.

2. The Plucker software home page
(which contains programs, instruc-
tions, samples, and source code) is
<www.plkr.org/index.plkr>.

3. AvantGo, a commercial software
product that is often bundled with
other PDA-provided software, is
available at <www.avantgo.com>.

4. PalmReader software is available at
<www.palmdigitalmedia.com/-prod
uct/reader/browse/free>.

5. Adobe Acrobat software for the PDA
is available at <www.adobe.com>.

8 CROSSTALK The Journal of Defense Software Engineering June 2005

About the Author

Col. Kenneth L. Alford,
Ph.D., is a professor at
the Industrial College of
the Armed Forces at the
National Defense Uni-
versity in Washington,

D.C. He has served 26 years in the U.S.
Army as a personnel, automation, and
acquisition officer in a wide variety of
duty assignments, including his previous
position as an associate professor in the
Department of Electrical Engineering
and Computer Science at the United
States Military Academy, West Point,
N.Y. He has a doctorate in computer sci-
ence from George Mason University,
master’s degrees from the University of
Illinois at Urbana-Champaign and the
University of Southern California, and a
bachelor’s degree from Brigham Young
University.

National Defense University
408 4th AVE
Fort Lesley J McNair
Washington, DC 20319
Phone: (202) 685-4325
Fax: (202) 685-4175
DSN: 325-4325
E-mail: alfordk@ndu.edu

June 2005 www.stsc.hill.af.mil 9

How to Secure Windows PCs and Laptops
Terry Bollinger

The MITRE Corporation1

Progress brings new dangers: Powerful home computers, inexpensive high-speed Internet access, telecommuting, and software
flaws have combined to create a soft underbelly in the defenses of government and corporate networks – and there is evidence
that this weakness is being exploited. As of early 2005, many home and small business systems contain uninvited programs
that capture keystrokes and passwords, hand control over to hostile users, and lull their owners into a false sense of security
by undermining their virus and spyware checkers. The goal of such hardcore spyware programs is to help attackers profit at
your expense by stealing your data, resources, money, or identity. Home PCs and laptops used in telecommuting are tempting
targets for hardcore spyware since they provide easy access to data that otherwise can be found only in well-guarded enterprise
networks. This article describes defensive strategies for reducing your level of risk from hardcore spyware.

Spyware is a form of uninvited malicious
software that resembles viruses, but has

a much more specific goal: Spyware steals
your data, time, computer resources, or
even identity so that someone else can
profit from them. Because most anti-virus
products prior to 2004 did not look for
spyware, occurrences of it in home and
small business Windows PCs and laptops
have exploded. For example, at a recent
demonstration I gave on how to remove
spyware from Windows systems, a network
engineer brought in a Windows 2000 lap-
top that his wife used in her small business.
He kept it behind a firewall, one that was
noted for its ability to block Internet virus-
es, and he had scanned it several times for
spyware. Consequently, he did not expect
to find any significant malicious software.

As it turned out, the laptop contained a
keylogger, which is a type of hardcore spy-
ware that records every password and key-
stroke. It also contained a transponder for
recording entries into forms and installing
other forms of spyware, and a hidden
reconfiguration of standard Windows utili-
ties that made the laptop into a Web server
whenever it was online. The real shocker
was yet to come. After removing the key-
logger, tracker, and Web-hosting configura-
tion, I clicked on its factory-installed virus
checker. Immediately, the same hardcore
spyware programs just removed reappeared
and tried to install themselves. This time,
however, the newly installed active spyware
guards caught them. The spyware had been
hiding in the standard-issue virus checker,
ready to go the first time anyone tried to
use the virus checker.

How could someone who had taken
more-than-average care to secure his
wife’s laptop be so wrong about the
degree to which it had been taken over by
spyware? Was the takeover an aberration,
some sort of one-in-a-thousand situa-
tion, or was it a symptom of a larger and
more serious problem?

More Scary Stories
If you try applying all the spyware removal
methods I describe in this article to home
or small business Windows systems that
belong to you and your friends, you will not
have to take my word for how bad the spy-
ware situation has become. You will find
out for yourself. For now, let me give you a
few more examples I have encountered of
how bad the spyware situation has become:
• Self-Destructing Computers. Users

who attach Windows systems to
broadband Internet connections with-
out a firewall can become infested with
spyware so quickly that the system may
become unusable within days. In one
system that had been cleaned of spy-
ware, the owner let his active spyware
guards expire. By the end of the day it
had stopped responding to anything
the owner did, even while its disk and
Internet connection kept churning
furiously.

• Massive Infection Rates. A Windows
system that has never before been
checked for spyware typically has hun-
dreds to thousands of the infections.
While most of these will be the milder
varieties that clog your system but do
not steal your data, it is also common
for such a system to have a few
instances of the much more serious
kinds such as keyloggers and remote
administration terminals. Such massive
rates of infection should fall rapidly
throughout 2005 with the release of the
new Microsoft AntiSpyware product,
but only for the Windows 2000, XP,
and 2003 systems to which it applies.
Users of older Window 95, 98SE, and
ME systems may even see an increase
in spyware infection rates as attackers
shift their focus to the more vulnerable
older Windows systems.

• Subverted Security Applications.
Here is another example of how virus

checkers can be converted to the cause
of protecting spyware. In late 2004, I
uncovered a previously undetected
keylogger and two remote administra-
tion terminals by using a new spyware
checker, GIANT AntiSpyware.
(Microsoft subsequently bought this
application and renamed it Microsoft
AntiSpyware.) However, although
GIANT was able to find this previous-
ly undetected hardcore spyware, it
could not remove it. GIANT would
always seize up or, remarkably, de-list
its finds before it reached the point
where it could remove them. On a
hunch, I temporarily uninstalled the
huge, multi-function professional
Internet security suite that I had been
using for years. Sure enough, GIANT
was able to finish removing the hard-
core spyware. At some point, my
Internet security package had been
subverted and was being used to help
the spyware hide and survive!

• Outright Break-ins. Imagine a
Windows system that is invisible to any
kind of probes from the Internet,
arguably free of viruses, spyware, and
subverted security applications, and
resides behind two very tightly config-
ured firewalls. How often would you
expect someone on the Internet to
break into such a system, scrounge
around for interesting files, and send
the results back to themselves? My own
experience has been that it occurs
somewhere in the range of once a week
to once a month. Some of the files that
I logged as they were being smuggled
out included excerpts from public but
hard-to-find Enron e-mails, registry set-
tings for my speaker and microphone
drivers, settings for one of my spyware
tools, and an e-mail about a spyware
article I had written. Ironically, the
source of the break-ins later proved to
be a security hole in the same data-log-

10 CROSSTALK The Journal of Defense Software Engineering June 2005

Reality Computing

ging tool I was using to record the
thefts! If you use your home or laptop
systems for official-use-only govern-
ment documents, patents, or company
financial information, these kinds of
subtle break-in routes should give you a
good reason to worry.

The Spyware Hierarchy
To understand the dangers of spyware it is
important to know the main varieties,
which vary widely in how difficult they are
to remove. The main types are shown in
Figure 1. At the top of the spyware hierar-
chy is the most prevalent, least damaging,
and easiest to remove spyware. Adware,
which presumes to take over small chunks
of your computer’s resources to present
ads to you whether you want them or not,
is an example of this type of relatively mild
or softcore spyware. When I first began look-
ing for spyware on my home systems,
adware and other types of softcore spy-
ware typically outnumbered the more dan-
gerous forms by ratios of hundreds or
thousands to one.

Adware can be interpreted as an aggres-
sive form of advertising, which is one rea-
son why virus scanner companies made the
unfortunate decision not to look for it or
remove it when scanning systems for mali-
cious software. The decision was unfortu-
nate because adware has likely become the
single most common cause of severely
degraded performance in Windows sys-
tems. While a single adware program does
not consume many resources, the problem
occurs when marketers from around the
globe descend over the Internet to engage
in an adware feeding frenzy – with your
computer as the main course. The resulting
unintentional situation is surprisingly simi-
lar to what is known in cyber warfare cir-
cles as a denial of service attack, in which a

computer or network is brought down by
flooding it with trivial requests.

The next level down, hardcore spyware, is
far more dangerous. This class of spyware
makes no pretense of being legal, and so,
unlike softcore spyware, it tries its best to
stay hidden. Hardcore spyware includes
keyloggers, remote access software, activity
trackers, and in general anything that places
your system and personal activities under
the control of someone who has no busi-
ness nosing around in them. Ironically, one
reason why virus scanners were slow to
look for hardcore spyware is that there are
many legitimate software products that are
legal if used strictly on systems you own
and control, but which instantly become
hardcore spyware if placed without per-
mission on someone else’s system. Other
forms have no situations in which they are
legal, and survive by techniques such as
changing rapidly to avoid detection by
scanner programs.

Sometimes, threats grow faster than the
terminology used to describe them. A wor-
risome new trend is for hardcore spyware
to be accompanied by helper programs that
protect the spyware by going on the offen-
sive against the very programs that are sup-
posed to protect your system, such as virus
and spyware scanners. My own name for
this poorly recognized category of spyware
is Spyware HIV-like Attackers, or Shivas, in
reference to their unnerving ability to
undermine the security software immune sys-
tems of Windows systems.

At present, spyware checkers do not
scan for Shivas, although they can detect
them indirectly by spotting their spyware
clients and progeny. In the absence of tools
to search for Shivas directly, the only way to
find them is to look for unexpected protec-
tion or reinstallation of spyware. The only
way to remove a Shiva is through a process

of cleaning and uninstalling so that it keeps
clearing out their hidey-holes until they
become too damaged to function.

Beneath the Shivas are automated break-
ins, which are the result of spyware on the
Internet that is trying to get into your sys-
tem. Automated break-ins upset the tradi-
tional wisdom that avoiding certain Web
sites and not opening unrecognized e-mail
attachments will keep you from getting
malicious software. The sad truth is that if
you do nothing more than attach a
Windows PC to the Internet over a high-
speed line, it will be subjected to the first
stage of an automated attack – specifical-
ly, what is known as a directory services
(port 445) query – within seconds.
Automated attacks are why having a good
firewall is so critical to keeping your sys-
tem secure. Without good firewalls, auto-
mated break-ins can take over unguarded
Windows systems in as little as a few
hours or even minutes.

The deepest and most dangerous level
of the spyware hierarchy is to get the
attention not just of an automated attack
program, but of a real, live human attack-
er who is well versed in the flaws of a wide
range of Windows systems. Unlike an
automated attacker, a human can apply
creativity and ingenuity to breaking into
your system, and so can be particularly dif-
ficult to keep out. Once they break into
your system, a human attacker will typical-
ly place hardcore spyware and Shivas to
ensure easier access to it in the future. The
one positive side of human attackers is
that in comparison to automated attacks,
they are rare. There are simply not enough
human attackers around to mount the
same level of persistent attacks as auto-
mated methods can.

How Could This Happen?
How could spyware have gotten so bad
without more recognition of the problem?
A large part of what happened is that spy-
ware evolved too rapidly from innocuous
sources. Softcore spyware, for example,
has its roots in ordinary advertising, which
made it seem fairly harmless until it began
choking systems with so many ads that the
systems stopped working.

Similarly, several forms of hardcore
spyware began their careers as self-moni-
toring programs intended to increase secu-
rity, not undermine it. It was only when
such programs started showing up unan-
nounced on other people’s systems that
they became as dangerous as they are now.

Finally, and most worrisome, there has
always been a well-hidden community of
technically proficient but utterly unscrupu-
lous attackers who are far ahead in their

Figure 1: The Spyware Hierarchy

How to Secure Windows PCs and Laptops

June 2005 www.stsc.hill.af.mil 11

understanding of the flaws and holes in
Windows and other operating systems.
This group does not announce its inten-
tions; it simply takes the maximum possi-
ble advantage of any and every hole and
weakness it finds.

Microsoft is taking the spyware threat
very seriously. In November 2004, they
purchased a company with one of the best
products for finding dangerous spyware,
GIANT AntiSpyware. Within two months
they began distributing it for free to all
Windows XP and 2000 users under its new
name, Microsoft AntiSpyware. This pur-
chase bodes well for the future, since it
seems to indicate that Microsoft has rec-
ognized the seriousness of the spyware
threat and is taking action to help reduce
levels of infection in their XP and 2000
systems.

How to Secure Windows
Systems
The seven major steps in securing a
Windows system against spyware and relat-
ed threats are given in the following sec-
tions. The first step, removing all spyware,
is the most complex and important step in
the overall process.

1. Remove All Softcore, Hardcore, and
Shiva Spyware
This is the heart of the diagnosis and
removal procedure, and often produces
surprises. The three general techniques
underlying the procedure are: (1) repeated
removal of temporary files in which spy-
ware typically hides, (2) use of multiple
detection tools to increase coverage and
confuse any Shivas that may be in the sys-
tem, and (3) uninstall followed by a reinstall
of any tool that appears to be malfunction-
ing. The strategy is one of attrition, in
which you use your local advantage of
physical possession of the computer to dis-
rupt and confuse hardcore spyware and
Shivas until they are too damaged to avoid
detection.

The tools used in the removal process
are all either free for home use or demos
that can be used for initial cleanup even if
you do not purchase them. Links to these
tools, direct downloads of the entire set,
and the latest detailed version of the spy-
ware removal process can be obtained
from my Web site at <http://terry
bollinger.com>. Below is a very quick sum-
mary of the detailed spyware removal
process that can be found and downloaded
from my Web site:
1. (Optional) Prepare your computer:

(a) Download the needed free and
demo anti-spyware applications.

(b) Backup any important data and
applications.

(c) Disconnect your system from the
Internet.

(d) Turn off all sharing of printers and
folders.

(e) Kill (end) all unnecessary Windows
tasks.

2. (Optional) Uninstall unnecessary Web
programs and virus checkers.

3. (Optional) Install Mozilla Firefox (free).
4. (Optional) Install Flash Player for

Mozilla Firefox (free).
5. Install and use EasyCleaner (free) and

remove TEMP files (Start>Run, type
%TEMP%).

6. Install, update, and use CWShredder
(free).

7. Install and use Sygate Personal Firewall
(free for home use; Pro costs less than
$50).

8. Install, update, and use SpywareBlaster
(free).

9. (Unavailable for Win98 and ME users)
Install and use Microsoft AntiSpyware
(free).

10. Install, update, and use Webroot Spy
Sweeper (30-day demo).

11. Install and use Spybot Search and
Destroy (free).

12. Install and use Lavasoft Ad-Aware SE
Personal (free for home use).

13. If any tools fail, uninstall them and
then reinstall them.

2. Fully Update Windows and Internet
Explorer
Once Windows has been cleared of spy-
ware, Windows Update should be used to
verify that all of the latest security updates
have been downloaded for both Windows
and Internet Explorer. Even if this was
done earlier, it is a good idea to try it again
in case spyware was interfering with the
update process.

3. Uninstall Any Unnecessary
Communication Programs
Even simple, practical programs such as
time synchronization programs can cause
problems, as can widely used auto-updating
programs such as automated screen savers
with thousands of available images.
Multimedia programs, which often include
their own softcore spyware, can also be
problematic when used online. While
harmless in themselves, such programs
provide well-known forms of communica-
tion that a hacker can hijack and use for
alternative purposes.

4. Make Sure Your System Is
Stealthed (Invisible) on the Internet
Systems are stealthed, or hidden, on the

Internet when they refuse to respond to
queries to a number of standard port loca-
tions. To determine whether your system is
visible, I highly recommend using the free
Shields Up! Web site at <www.grc.com/
x/ne.dll?bh0bkyd2>. Another very good
site that also provides searches for Trojans
is Sygate Online Services, <http://scan.
sygatetech.com>.

5.Add Active Spyware Guards
You should keep at least one spyware guard
active at all times. Spybot Search and
Destroy provides a free spyware guard,
TeaTimer. Microsoft AntiSpyware also
provides a free spyware guard, but only for
users of the later Windows 2000, XP, and
2003 operating systems. If you decide to
purchase Webroot Spy Sweeper, it also pro-
vides active guards.

6. Maximize Firewall Protection
The choice of a firewall is the most critical
one to bringing break-ins down to negligi-
ble levels. Based both on features and the
success I have seen so far at cutting down
residual break-ins to my own systems, my
personal recommendation for this step is
the Sygate Personal Firewall Pro. Other
firewall options with good backing and
reviews – not all of which I have tried
myself – include ZoneAlarm Pro,
Symantec’s Norton Personal Firewall 2005,
and McAfee’s Personal Firewall Plus. All of
these can also be purchased as parts of
security suites. Due to the importance of
your firewall for fending off attempts to
break in to your system from the Internet,
it is usually worth getting the most power-
ful firewall products available, which are
generally called the Pro versions. Set it to
the maximum protection, then experiment
to find the least number of settings you
must turn off to allow your applications to
work correctly.

7. Make Sure Other Systems on Your
LAN Are Similarly Protected
A common spyware tactic is to use the first
PC captured in a home or small business
network as a beachhead for launching pow-
erful attacks against other computers in the
same network. Since locally networked
computers have special rights and higher
bandwidth than remote computers operat-
ing over the Internet, such attacks can be
far more difficult to fend off. For this rea-
son, it is vital that all PCs and laptops shar-
ing a LAN be made fully secure. An alter-
native is to completely isolate your PC
from others in the local network, but that
can be difficult to accomplish if you share
a single DSL or cable Internet connection
with them.

Conclusion
When it comes to small computer systems
linked to a global Internet, the days in
which we could fully trust the results of
our own computers and applications are
gone. Whether we like it or not, there are
people and communities on the Internet
who view home users and their systems as
prey – and they will go to remarkable
lengths to capture such prey.

Making home and small business
Windows systems more secure not only
prevents you from becoming the victim of
such a network predator, but also adds to
overall security for everyone by removing
the ability of your system to spread spy-
ware, and by reducing the total quantity of
sensitive data that can be collected on a
given topic. While the procedures given
here require some effort, I think it is fair to
say the benefits are well worth that effort.u

Note
1. This article is the result of independent

work by the author, and does not nec-
essarily reflect the views of his employ-
er, The MITRE Corporation, which is
listed here for identification purposes
only.

12 CROSSTALK The Journal of Defense Software Engineering June 2005

Reality Computing

About the Author

Terry Bollinger works
at The MITRE Corpora-
tion, McLean, Va., on
acquisition of leading-
edge information tech-
nologies. He is an Insti-

tute of Electrical and Electronics
Engineers (IEEE) Millennium Medal
Winner, a former assistant editor-in-
chief for IEEE Software, the main editor
for the recent Nov/Dec 2004 special
issue of IEEE Software on Persistent
Software Attributes, and the author of a
widely quoted 2002 survey of how open
source software is used in the Depart-
ment of Defense. His personal Web site,
<http://terrybollinger.com>, provides
detailed information and tool downloads
for removing spyware from Windows
computers.

Phone: (703) 588-7410
Cell: (703) 309-6317
Fax: (703) 588-7560
E-mail: terry@mitre.org

PC World
www.pcworld.com/downloads/browse/0,
cat,1727,sortIdx,1,pg,1,00.asp
PC World editors present a review of
their favorite anti-spyware tools in this
online article, including Ad-Ware SE
v1.05, Spybot Search and Destroy v1.3,
CWShredder v2.1, Microsoft Anti-
Spyware Beta, and NoSpyMail. The site
also features the article “Avoid Identity
Theft: Best Files to Protect Your
Privacy.”

iSecuritySource.com
www.isecuritysource.com
The iSecuritySource.com Web site fea-
tures details and information about the
spyware detected on your computer
from scanning, including Trojans,
worms, viruses, adware, and dialers, and
provides removal instructions. The site
also features an “Ask the Experts” forum.

Home PC Firewall Guide
www.firewallguide.com
The Home PC Firewall Guide provides
easy access to basic information about,
and independent third-party reviews of

Internet security and privacy products
for home, telecommuter, and small
office/home office end-users.

PCMag.com
www.pcmag.com/article2/0,1759,
1758380.asp
PC Magazine’s Web site notes that the
majority of PCs are infested with spy-
ware. The explosion of dedicated anti-
spyware applications in the past year
began to address the growing problem;
this article reviews eight of the leaders.

Microsoft Windows
AntiSpyware
www.microsoft.com
Windows AntiSpyware (Beta) is a securi-
ty technology that helps protect Win-
dows users from spyware and other
potentially unwanted software. Known
spyware on your PC can be detected and
removed, helping reduce its negative
effects, including slow PC performance
and annoying pop-up ads. Continuous
protection improves Internet browsing
safety by guarding more than 50 ways
that spyware can enter your PC.

WEB SITES

July 7-10
Internet, Processing, Systems, and
Interdisciplinaries (IPSI) 2005

Cambridge, MA
http://internetconferences.net/usa

2005/index.html

July 12-15
2005 IEEE Conference
on Services Computing

Orlando, FL
http://conferences.computer.org/

scc/2005

July 17-20
17th ACM Symposium on Parallelism in

Algorithms and Architectures
Las Vegas, NV

www.spaa-conference.org

July 17-21
MobiQuitous 2005

The 2nd Annual International
Conference on Mobile and Ubiquitous

Systems: Networking and Services
San Diego, CA

www.mobiquitous.org

July 21-26
CINC 2005

7th International Conference on
Computational Intelligence and Natural

Computing
Salt Lake City, UT

www.jcis.org/pages/sub
conference/cinc/cinc.aspx

July 24-29
Agile 2005

Denver, CO
www.agile2005.org

July 26-29
CMMS 2005: The Computerized

Maintenance Management Summit
Indianapolis, IN

http://maintenanceconference.com/
cmms

May 1-4, 2006
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

June 2005 www.stsc.hill.af.mil 13

The Unified Modeling Language
(UML) is a notation that can be

applied to the software development
process. UML, in itself, is not a software
development process, but a system model-
ing language developed by Grady Booch,
James Rumbaugh, and Ivar Jacobson of
Rational Software. It provides a design
notation whereby the scenarios for which
the system requirements can be utilized
are depicted as well as subsequent design
notation for the chosen implementation.
This methodology was a merging of these
men’s separate practices in object-oriented
(OO) software design notation1. The pri-
mary goal of UML is to model systems
using OO software (also referred to as
architectural-based software).

UML:The Why
Whenever something is built, drawings are
made to describe the look and feel of the
entity being built. These drawings work as
a specification of how we want the fin-
ished product to look. The drawings are
handed over to builders or are broken into
more detailed drawings necessary for the
construction. A well-architected product
pays off in the end, but high quality does
not just happen. Software quality is a result
of correctly understanding the require-
ments, a solid design that is readily imple-
mented into code, quality user documenta-
tion, and is committed to satisfying the
user’s needs.

Software design is the equivalent of
these construction drawings, and is devel-
oped simply to produce a software solu-
tion to a problem. The process of soft-
ware design can be described as an activi-
ty in which the designer develops a highly
abstract model of a solution and then
transforms it into a very detailed design.
OO, or architectural-based design, guides
the designer into thinking about the
decomposition of problems into a collec-
tion of autonomous agents or objects that
can be mapped as closely as possible to a
physical representation of the system. The
designer can then resolve the system in
terms of behaviors and responsibilities of
objects.

By reducing the interdependency

among software components, architectur-
al-based programming permits the devel-
opment of reusable software. Such soft-
ware components can be created and test-
ed as independent units in isolation from
other portions of a software application.
Programming then becomes the simula-
tion of the model spectrum. Keep in mind
that the designer’s ultimate requirement is
to meet the fitness of purpose of the user’s
needs: Does it work and does it do the
required job as well as possible2?

Note that it takes less time to build a
system by making instructions (and follow-
ing them) than it would take to start from
scratch to build a system without direc-
tions. This is because documenting the
specifications to the desired product
allows the analyst/developer to (1) verify
his understanding of the task at hand, (2)
visualize and identify the most crucial
components of the system, and (3) identi-
fy goals that keep the team focused to the
system objectives. The time considered
gained by omitting the development of
concrete plans is paid for many times over
in misinterpreted requirements, inefficient
code implementation, faulty software, and
unhappy end-users.

UML is a standardized design language
that provides a mechanism for creating this
design, particularly when the software being
developed is done by using OO principles.

UML uses foundation pieces that
describe the abstraction of system com-
ponents called classes, and the instantia-
tion of those classes into system objects
that are later used to provide management
of component functionality and data. For
further details on OO techniques, see the
Notes section at the end of this article.

UML:The How
UML is defined by depicting the software
from various aspects or views. Each view
can be displayed using a variety of dia-
grams that detail the contents of the
views. Each diagram is composed of OO
concepts to include classes, objects, mes-
sages, relationships, and dependencies.
These concepts or elements are persistent
throughout the design process, or rather
they do not change meaning or symbolo-
gy throughout the design.

By looking at a physical system from
different views, a developer or user can
concentrate on one aspect of the system at
a time. The UML views are the following:
• Use Case View: Depicts the func-

tionality of the system as perceived by
the external actors.

• Logical View: Depicts how the func-
tionality is designed inside the system.

• Component View: Depicts the
organization of the code components.

• Concurrency View: Depicts concur-

How and Why to Use the Unified Modeling Language
Lynn Sanderfer

TecMasters, Inc.

This article addresses the Unified Modeling Language and its purpose, constructs, and application to defense software devel-
opment applications.

Figure 1: Use Case Diagram

rency in the system, addressing the
problems with communication and
synchronization that are present in a
concurrent system.

• Deployment View: Depicts the
deployment of the system into the
physical architecture with computers
and nodes.
To display these views, UML intro-

duces nine different types of diagrams:
Use Case Diagrams (see Figure 1), Class
Diagrams, Object Diagrams, Sequence

Diagrams, State Diagrams, Collaboration
Diagrams, Activity Diagrams, Component
Diagrams, and Deployment Diagrams.3

Use Case Diagrams
Use case modeling is a design modeling
technique that uses both verbal and graph-
ic descriptions to reveal what a new system
should do or what an existing system
already does via Use Case Diagrams. These
diagrams are the starting point when
designing a new system using UML. This
notation or diagram is designed to com-
municate exactly what is expected of a sys-
tem upon completion to management,
customers, and other interested parties.

There are four basic components of
Use Case Diagrams:
• System.
• Actors.
• Use cases.
• Relationships.
The system is the entity that performs the

function. Actors are entities, people, or
other systems that use the system to be
developed. Use cases are the actions that a
user takes on a system. Relationships
depict how actors relate to use cases.

If additional functionality is required
in a use case description, this can typically
be handled by include and extend relation-
ships (see Figure 2). The include relation-
ship is used to indicate that a use case will
include functionality from an additional use
case to perform its function. Similarly, the
extend relationship indicates that a use
case may be extended by another use case.

To describe use cases, a software
designer would first identify the actors of
the system. Next, designers would ask the
providers of the requirements for more
information about what they want. A
designer should always keep these ques-
tions in mind as this information
exchange progresses: “What will the sys-
tem do?”, “What input/output does the
system need?” and “What are the major
problems with the current implementa-
tion of the system?”

Class Diagrams
A Class Diagram describes the static view
of the system (see Figure 3). It is a func-
tional representation of the system that
reveals where data resides and where func-
tionality is available through the use of
class attributes and operations to outside
classes. Class Diagrams define the founda-
tion for other diagrams, and show classes
of the systems and relationships among
the classes. If object instances of a Class
Diagram are shown, it becomes an Object
Diagram (see Figure 4).

To create a Class Diagram, the classes
have to be identified and described. A
class is drawn with a rectangle and divided
into three compartments: the name com-
partment, the attribute compartment, and
the operation compartment. The name
compartment of a Class Diagram contains
the name of the class. It is typed in bold-
face and centered. The attribute compart-
ment contains the characteristics that
describe the class. For example, a comput-
er class would have manufacturer, model
number, storage size, speed, and perhaps
operating system as attributes. The opera-
tion compartment contains the operations
or methods by which the attributes are
manipulated, as well as other system func-
tionalities. The operators in a class
describe what the class can do. Both
attributes and operations of a class can
have different visibility (+ for public, - for
private) privileges. Classes show their rela-
tionships by way of associations or a
semantic connection between objects that

14 CROSSTALK The Journal of Defense Software Engineering June 2005

Reality Computing

Figure 3: Sample Class Diagram Notations

Figure 2: Extended/Include Use Case Notation

Figure 4: Sample Object Diagram

How and Why to Use the Unified Modeling Language

June 2005 www.stsc.hill.af.mil 15

indicate the direction of service, how many
relationships called multiplicity, and repet-
itiveness.

Sequence Diagrams
A Sequence Diagram describes the
dynamic view of the system (see Figure 5).
This diagram is important in that it shows
the sequence of messages sent between
the objects with respect to time. The
Sequence Diagram consists of a number
of objects shown with vertical lines. The
objects are activated from left to right with
an indication of the exchange of messages
between the objects. Messages themselves
are shown as lines with message arrows
between the vertical object lines.

Each object in a Sequence Diagram is
represented by an object rectangle with
the object/class name underlined. A verti-
cal dashed line down from the object,
called the object’s lifeline, indicates the
object’s execution during the sequence.
Communication between objects is repre-
sented as horizontal message lines
between the object’s lifelines. The arrows
indicate whether the message is synchro-
nous (flow is interrupted until the mes-
sage has completed), asynchronous (active
object does not wait on a response), or
simple (flat flow depicting control is
passed without indicating details).
Sequence Diagrams can also show
branching, iteration, recursion, creation,
and destruction of objects.

State Diagrams
State Diagrams are dynamic in nature and
depict how an individual object changes
state when a behavior is invoked (see
Figure 6, next page). It also indicates the
invoking event. A state diagram should be
attached to all classes that have clearly
identifiable states and complex behavior.

A state-chart diagram is composed of
states, transitions, and events. A basic state
is shown as a rectangle with rounded cor-
ners. The name of the state is placed with-
in the rectangle. The first state in a model,
or the start state, is simply a solid dot. The
last state in a model (the end state) is a
solid dot with a circle around it.
Transitions are used to show flow from
one state to another. A transition is mod-
eled by an open arrow from one state to
another.

Collaboration Diagrams
Collaboration is another depiction of the
dynamic behavior of a system (see Figure
7, next page). Collaboration Diagrams,
showing both a context and an interac-
tion, can be thought of as a combination
of the Class Diagram and Sequence

Diagram. Collaboration Diagrams actually
model either objects or roles and their
sequenced communication between each
other. Message sequence in Collaboration
Diagrams is identified by numbering the
messages with labels.

Message type in Collaboration
Diagrams is the same as in Sequence
Diagrams: synchronous, asynchronous,
and simple. Messages sent in parallel can
be described using letters in the sequence
number expression. For example, the
sequence numbers 1.1a and 1.1b of two
messages in the collaboration diagram
indicate that those messages are sent in

parallel.

Activity Diagrams
The Activity Diagram captures actions as
the states of a system change (see Figure
8, page 17). Activity Diagrams focus on
work performed in the execution of a
function. The states in the Activity
Diagram transition to the next stage
directly when the action in the state is per-
formed without specifying any event.
Activity Diagrams also have swimlanes, or
a grouping of activities according to the
responsible software entity. Activity
Diagrams show the following:

Object-Oriented or
Architectural-Based Concepts

Architectural-based design models the problem in terms of a set of particular enti-
ties or objects that can be recognized in the problem itself, together with a descrip-
tion of the relationships that link these entities. The initial description of the system
is defined in an abstract top-down process. A complete and detailed model of the
solution is then developed by elaborating the descriptions of the entities and the
interactions occurring between them. The strategy then is composed of grouping
elements together in the design that can be described with the same functionality.
The implementation is done as a bottom-up development process. Programming
from an architecturally based design is comprised of the following concepts:
• Object is the encapsulation of data values (or states) and operations (or behav-

iors) into one executable entity.
• Class is the abstract or generic description of a concept in terms of data types

and operations.
• Inheritance is the principle that knowledge of a more general category is appli-

cable also to the more specific category. In this way classes can be organized
into a hierarchical inheritance tree.

• Information hiding is the principal by which a client sending a request or invok-
ing a process need not know the actual means by which the request will be hon-
ored.

• Abstraction is the ability to describe a type or functionally in generic terms there-
by isolating design and execution information. Information hiding is a specific
type of abstraction.

Figure 5: Sample Sequence Diagram

• The work that will be performed when
an operation or method is executing.

• The internal work of an object.
• How a set of related actions may be

performed, and how they affect
objects around them.

• An instance of a use case in terms of
object state changes.
Activity Diagrams can have a start and

an end point. A start point is shown as a
solid filled circle; the end point is shown as
a circle surrounding a smaller solid circle.
The actions in an Activity Diagram are
drawn as rectangles with rounded corners.
Within the action, a text string is attached to
specify the action(s) taken. Transitions

between actions are shown with an arrow,
to which guard-conditions, a send-clause,
and an action-expression can be attached. A
diamond shaped symbol is used to show a
decision point. Swimlanes group activities,
typically, with respect to their responsibility.
Swimlanes are drawn as vertical rectangles.
The activities belonging to a swimlane are
placed within its rectangle with a name at
the top.

Component Diagrams
A Component Diagram is a type of imple-
mentation diagram (see Figure 9); it shows
where the physical components of a sys-
tem are going to be placed in relation to

each other. In the Component Diagram
the physical pieces are the actual software
entities.

A component is shown in UML as a
rectangle with an ellipse and two smaller
rectangles to the left. The name of the
component is written below the symbol or
inside the large rectangle. A software
dependency is shown as a dashed line with
an open arrow and indicates that one
component needs another to be able to
have a complete definition.

Deployment Diagrams
The deployment view is the second type
of implementation diagram and shows the
physical layout of the software system
after being installed on the actual hard-
ware system and how the software com-
ponents will interact with each other.
Deployment Diagrams (see Figure 10) are
described in terms of nodes, connections,
and software components executing on
nodes.

Nodes are physical objects that have
some kind of computational resource.
This includes computers with processors,
as well as devices such as printers, com-
munication devices, card readers, and so
on. A node is drawn as a three-dimension-
al cube with the name inside it.

Nodes are connected via a communi-
cation association. The communication
type is represented by a stereotype that
identifies the communication protocol or
the network used. Executable component
instances may be contained within node
instance symbols, showing their physical
residence and execution on the hardware.

Conclusion
UML is a standard practical methodology
used in representing OO systems, regard-
less of the procurement or financial
aspects of the program, i.e., commercial
or government. Advanced software proj-
ects or projects that are committed to
leading-edge software technologies and
concepts typically find value in designing
their software systems to the physical sys-
tems that they represent. This allows non-
software personnel to grasp the concept
of operations of the system without hav-
ing to understand software terminology.
This also lends itself to reducing software
life-cycle costs because it produces modu-
lar code with well-defined interfaces.

Historically, it can be shown that the
more time rendered on requirements and
design, the better the product when in the
code and test phase. It does, in fact,
improve the quality of your product, as
well as other development factors, when
the design of the system is clearly con-

Reality Computing

16 CROSSTALK The Journal of Defense Software Engineering June 2005

Figure 6: State Diagram Example

Figure 7: Collaboration Diagram Example

How and Why to Use the Unified Modeling Language

June 2005 www.stsc.hill.af.mil 17

veyed with respect to the intended
requirement. However, as Doug
Rosenberg stated [1], “The cold, hard real-
ity of the world of software development
is that there is simply never enough time
for modeling.”

The methodologies provided by UML
are very rarely utilized exhaustively. There
is simply not enough time or money to do
so. In fact, I have seen excellent defense
software efforts that implemented OO
design with design techniques other than
UML. However, to the designers and
developers of software systems, UML
offers very sound techniques in describing
systems. Furthermore, if you are new to
OO software development, UML pro-
vides a road map by which, if you take the
time to depict the design in the various
UML software design views, it is easier to
produce a good product than not!u

Reference
1. Rosenberg, Doug, and Kendall Scott.

Use-Case Driven Object Modeling With
UML: A Practical Approach. Addison-
Wesley Professional, Mar. 1999.

Notes
1. Grady Booch developed Booch dia-

grams. Booch defined the notion that
a system is analyzed as a number of
views where each view is described by
a number of diagrams. The principals
in his methodology were sound,
based on depicting several views of
the software; however, the Booch dia-
gram notation that was based around
clouds symbology was cumbersome
to implement.

2. James Rumbaugh developed the Ob-
ject Modeling Technique while em-
ployed at General Electric. His meth-
odology was founded in expressing the
software in various methods: the ob-
ject model, the dynamic model, the
functional model, and the use-case
model.

3. Ivar Jacobson developed the Object-
Oriented Software Engineering/
Objectory design methodology. His
system is based on use-cases, which
define the initial requirements on the
system as seen by an external actor.

Additional Reading
1. Roff, Jason T. UML A Beginner’s

Guide. McGraw-Hill, 2003.
2. Eriksson, Hans-Erik, and Magnus

Pinker. UML Toolkit. John Wiley &
Sons, Inc., 1998.

3. Kroll, Per, and Philippe Druchten. The
Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP.

Addison-Wesley, 2003.
4. Budgen, David. Software Design.

Addison-Wesley, 1994.
5. Budd, Timothy. An Introduction to

Object-Oriented Programming. Addi-
son-Wesley, 1991.

6. Pressman, Roger S. Software Engi-
neering: A Practitioner’s Approach.
3rd ed. McGraw-Hill, 1992.

7. Stephen Prata. The Waite Group’s
C++ Primer Plus. 3rd ed. Indiana-
polis, IN: Sam’s Publishing, 1998.

Figure 8: Activity Diagram Example

About the Author

Figure 9: Component Diagram Example Figure 10: Deployment Diagram

Lynn Sanderfer is a
software analyst for
TecMasters, Inc. and is
currently contracted on
the Army Mission Plan-
ning Software Program.

She has been in software develop-
ment/software engineering for 18 years.
Sanderfer has completed the Software
Life Cycle Development Certification,
the Software Engineering Management
Certification, and the Advanced Soft-
ware Development Certification offered
by the Air Force Institute of Technolo-
gy Software Professional Development
Program. She is also certified as a

Capability Maturity Model® Integration
Auditor with CSSA, Inc., a licensed part-
ner of the Software Engineering
Institute. She has a bachelor’s degree in
engineering from the University of
Alabama in Huntsville and is currently
working on her master’s degree in soft-
ware engineering there.

TecMasters, Inc.
1500 Perimeter PKWY
STE 200
Madison,AL 35758
Phone: (256) 830-4000
Fax: (256) 830-4093
E-mail: theresa.sanderfer@us.army.mil

Object-oriented (OO) design as a
software programming technique

has been around almost 40 years,
although it has become prominent in
military and government systems devel-
opment in only the last few years. Its use
has grown from just a programming trick
to a complete approach to analyzing and
solving complex problems.

As with any technology, OO design
has not always been applied successfully.
Literature is full of misapplied OO tech-
niques as well as impractical recommen-
dations. The authors have seen both
good and bad OO programming in large
military systems. This article will try to
enumerate the most common pitfalls and
offer practices that have been shown to
work.

The practices recommended in this
article are motivated by the desire to use
OO technology to its best effect. OO
techniques provide the opportunity to
capture the logic of a complex domain
or problem environment in a structure
that reflects or is congruent with interre-
lationships among actual domain ele-
ments. This structure encapsulates the
impact of volatile requirements and
design decisions, and provides a natural
mapping from requirements to design.
Consequently, the design is flexible, facil-
itating system integration and repeated
adjustments or enhancements to the
implementation during initial develop-
ment and subsequent maintenance.
Therefore, these attributes of congru-
ence and flexibility reduce system life-
cycle costs and are worth striving for
rather than settling for any design that
can be made to work.

Practices the authors have used to
help struggling OO projects include the
following:
• System-wide software architecture.
• Layered software architecture with

domain layer.
• Goal-directed black box use cases.
• Spiral design.
• Architecture and code iterations.
• Spare modeling.
• Experienced OO guides.

These practices have been widely rec-
ommended by many OO experts. The
authors’ experience is that they are just
as valid for complex system development
within government acquisition pro-

grams. The authors have incorporated
many of these recommendations into a
prescriptive methodology [1].

The following sections describe these
practices in more detail. However, to
keep this article within an acceptable
length, it is assumed the reader is famil-
iar with typical development practices
that are referenced during the discussion.

System-Wide Software
Architecture
One of the most effective means of pre-

serving congruence between the domain
and the design is to use OO techniques
to decompose the software across the
entire system. Working from a software
perspective with such a broad scope
yields a unified, system-wide, software
architecture, expressing domain con-
cepts with semantic consistency
throughout the software.

Too often, programs follow past pat-
terns of system design that preclude
good OO design. System designers, too,
readily define logical design components
to match organizational structures, phys-
ical elements of the design, or sub-func-
tions of deep functional analysis per-
formed without sufficient feedback (e.g.,
any) from software design. While these
decompositions may match conveniently
to the specialties of different groups,
correspond to the administrative hierar-
chy of the development team, or enable
easy traceability, they constrain the scope
of any software perspective to individual
boxes, conflict with OO structuring, and
increase the difficulty of maintaining
overall semantic consistency (e.g., consis-
tent interpretation of data) among the
components.

Semantic consistency among differ-
ent parts of a system is extremely impor-
tant. Trying to maintain that consistency
by merely matching interfaces of system
components is not sufficient, especially
if the major logical interfaces are forced
to align with physical interfaces. OO
approaches need to work with the soft-
ware as a whole to define major class
interfaces for flexibility and congruency,
without the imposition of other decom-
positional schemes.

The only way to preserve flexibility
and congruence of software design in
balance with other tradeoffs is for OO
developers to work closely with other
team members during multiple iterations

Effective Practices for Object-Oriented
System Software Architecting

Rich McCabe and Mike Polen
Systems and Software Consortium

Development programs for software-intensive systems are increasingly attempting to employ object-oriented (OO) techniques
and technologies – including OO design, the Unified Modeling Language (UML), and UML-based modeling and software
development tools – in expectation of achieving greater flexibility, evolution, and productivity. However, these programs fre-
quently experience a number of challenges when they insert OO design into their traditional practices. Unless both develop-
ment organizations and acquisition offices make a thoughtful transition to OO design, they are likely to experience difficul-
ties that may well endanger the anticipated benefits. This article describes some typical pitfalls of OO development and rec-
ommends a number of architectural practices that will help programs avoid or mitigate these dangers.

18 CROSSTALK The Journal of Defense Software Engineering June 2005

“OO techniques provide
the opportunity to

capture the logic of a
complex domain or

problem environment
in a structure that

reflects or is congruent
with interrelationships

among actual
domain elements.”

June 2005 www.stsc.hill.af.mil 19

of the requirements and design.
Although software is malleable enough
to fit into almost any decomposition,
taking for granted the benefits of a sys-
tem-wide OO structure is almost certain
to compromise them.

Layered Software Architecture
With Domain Layer
Grouping related classes into layers is
another technique for managing and
coordinating many classes in large sys-
tems. The term layer is something of a
misnomer in that the layers are not strict-
ly arranged like a cake. However, the
classes in a layer should all deal with
some common aspect of the design and
have limited access to other layers (upper
layers call upon the services of lower lay-
ers but not vice versa). Figure 1 is a rep-
resentative example. Usually, only one or
a few key classes present all the services
of the layer to other layers, the other
classes of the layer are hidden behind
this interface.

One of these layers should be
focused on the domain specifics of the
system and be the key to understanding
the domain. This layer is typically called
the domain layer (or system or business
logic layer), or is named for the particu-
lar domain (e.g., accounting, or battle
management). Classes in this layer are
defined to represent the essential con-
cepts and relationships in the domain in
terms that the subject matter experts
understand [2]. It should have no knowl-
edge of the underlying hardware, com-
munication protocols, operating system
features, or other aspects of the design
known to other layers. The domain layer
is key to the overall understandability
and flexibility of the design.

Typical subsystem partitions are not
equivalent to OO layers and usually chop
up what would correspond to the
domain layer. As discussed in the previ-
ous section, the design is often prema-
turely split into traditional subsystems
before any consideration is given to
overall domain congruence or flexibility.
Frequently, the authors have seen
designs structured in the form of all-
knowing device-centered subsystems,
each containing bits of domain knowl-
edge intertwined with hardware inter-
faces and other types of design knowl-
edge, and each interconnected to all the
others. This kind of design arises from
trying to scale up a simple data pipeline
or thread to a system with multiple, inter-
connected data pipelines. The result is a
fragile, inflexible design with bits of

domain and design knowledge expressed
in multiple locations.

Goal-Directed, Black Box
Use Cases
The use case technique [3], when
applied appropriately, has the advantage
of clarifying the intent of system stake-

holders without unduly presuming the
design. Use cases are a narrative of sys-
tem interaction with external entities.
Best practice structures each use case
around a single goal of a system user or
stakeholder, and treats the system as a
black box with observable behaviors.
Although use cases are a technique for
requirements analysis, their black box
orientation prevents design assumptions
from creeping into requirements.
Furthermore, the emphasis on system
interaction with external entities in
meeting goals helps OO developers
identify essential entities and concepts
in the domain (as discussed in the previ-
ous section).

Like any technique, use cases can be
misapplied as in the following:
• Although use cases can be applied at

different levels (notably to analyze
systems containing people: at the

outer level to express system interac-
tions with external actors, and at an
inner level to express interactions of
the hardware/software with people
within the system), it is a mistake to
mix levels.

• Ignoring stakeholder goals as the
organizing principle for use cases
leads to haphazard narratives that do
not clearly reveal how the system
produces value for the stakeholders.

• Another common mistake is failing
to abstract away from details of the
interfaces, data, or interaction proto-
cols in the use case narrative, or oth-
erwise attempting to develop com-
plete use cases that cover every possi-
ble detail or scenario. This treatment
leads to a proliferation of endless use
cases of rapidly diminishing value.
Use cases should be employed judi-

ciously to illuminate key system behav-
iors, not to exhaustively document
requirements. The opposite extreme,
treating use cases as no more than the
Unified Modeling Language (UML) use
case diagram, is pointless.

Often, use cases are ignored entirely.
True, use cases need to be augmented
with other requirements techniques, but
use cases provide a unique and impor-
tant perspective.

Spiral Design
A spiral approach to OO design general-
ly yields the best results. Here, a spiral
approach means that the designers begin
by addressing just a few key issues in an
initial design, and then incrementally
address other concerns and complica-
tions in multiple revisions. Initially,
developers make only a rough allocation

Figure 1: Generic Layers

Effective Practices for Object-Oriented System Software Architecting

“Too often, programs
follow past patterns

of system design
that preclude good

OO design.”

of responsibilities to components, and
gradually resolve the details as design
issues are introduced and decided. Here
is a partial ordering of issues that
appears to work well:
• Domain congruence and flexibility.
• Mapping to physical architecture.
• System attributes.
• Concurrency.

Of course, program-specific circum-
stances impact this general scheme such
as whether the development team has
previously developed OO designs for
similar systems.

Many programs attempt to directly
create a design that simultaneously
addresses all system issues and provides
detailed interface descriptions as well.
This invariably leads to an overly com-
plicated design because the designer has
too many concerns to juggle at once.
The mental overload causes many errors
and results in a big ball of mud [4].
Instead, the designers need to start with
a simple yet admittedly inadequate
design and work in complications one at
a time, rebalancing earlier design ele-
ments as necessary.

Domain Congruence and
Flexibility
The initial design captures the essentials
of the domain to ensure flexibility and
understandability (see previous section
“Layered Software Architecture With
Domain Layer”). The intent is to pre-
serve the flexibility of the initial design
as much as possible, but compromise it
where necessary to address other
demands.

Mapping to Physical Architecture
Multi-processor architectures potential-
ly introduce a number of complications
best delayed until the domain essentials
have been identified. Assignment of
functionality to various processors has
subtle implications for both timing and
reliability. Trying to force these deci-
sions too early before more information
is available about other aspects of the
design (and even the implementation) is
both difficult and dangerous, and tends
to emphasize physical interfaces over
logical (domain) interfaces. Delaying
such decisions is usually advantageous,
especially when facilitated by infrastruc-
ture technologies such as Common
Object Request Broker Architecture
(CORBA).

Similarly, OO designs typically encap-
sulate hardware interfaces inside classes,
protecting the rest of the system from
volatilities in the device interfaces. This

technique usually relegates many of the
decisions in allocating requirements to soft-
ware or hardware as a secondary concern.

System Attributes
Timeliness, reliability, safety, security,
and other such system attributes are dif-
ficult to address individually and often
have tricky interdependencies.
Designers tend to begin with their
greatest concern (e.g., critical timing
paths) and orient the design toward that
aspect. In the authors’ experience,
designing for flexibility first and adjust-
ing for timeliness as proves necessary is
much more effective than designing first
for timeliness and subsequently for flex-
ibility. Similarly, designers need a pre-

liminary design combining both hard-
ware and software before they can
meaningfully analyze the impact of
other attributes.

Concurrency
Concurrency decisions are another area
best left until later. Concurrency can
add tremendous design complexity.
Start with as few concurrent elements
that will possibly work (one is often the
best starting point). Add new concur-
rent elements only after a performance
test or real-time analysis has shown that
the implementation will not work. The
authors have seen a narrow design focus
on timeliness lead to a (unsuccessful)
system design with more than 100 con-
current elements on a single processor.

Architecture and Code Iterations
Although architectural analysis is
important, systems today are too com-
plex to rely solely on analysis to ensure

that a design will exhibit the expected
attributes. The flexibility of a design
hinges on too many details that only
become apparent with coding. Yet these
coding details can have implications for
the larger design.

Fortunately, software is well-suited to
evolutionary development. Where testing
and configuration management discipline
is continuously applied, multiple itera-
tions of design, code, and test (in parallel
with deepening requirements analysis) are
more productive and effective than a
waterfall process. Coding the most critical
or highest-risk portions of the design val-
idates the solution approach. A robust,
flexible design is discovered and becomes
increasingly stable through multiple itera-
tions. This practice also fits well with spi-
ral design.

Even though the waterfall process is
rarely, if ever, suitable to manage the risks
of complex system development, it is still
prevalent in government contracting.
With the recent release of Department of
Defense 5000 [5], the government is try-
ing to rectify the traditional bias toward
waterfall-planned programs, but the
waterfall process remains predominant.
Typically, teams doing OO development
today within a waterfall process spend
their time creating, editing, and reviewing
UML diagrams. Unfortunately, translat-
ing from UML diagrams into code is not
automatic and often exposes major flaws
in the design.

When designers are inexperienced in
both OO programming and the underly-
ing infrastructure (such as CORBA) the
resulting designs are often misguided or
simply infeasible to implement. A com-
mon design defect is attempting to man-
age classes with a large number of
objects under tight timing considerations.
The kind of schedule pressure created by
the emphasis of a waterfall process on
getting everything right the first time
leads developers to opt for the most expe-
dient fix in code, rather than rethinking
the design.

Generally, programs, as reflected in
their plans and practices, do not appreci-
ate just how much good design depends
on feedback from prototypes, or prefer-
ably, from early implementations of par-
tial or simplified designs. As program
schedules become more compressed,
development teams are, in fact, coding
and designing simultaneously. However,
rather than plan for rapid design and
code iterations in an open and well-man-
aged fashion, they often attempt to mask
this reality beneath a simplified, waterfall
model being projected for the program

20 CROSSTALK The Journal of Defense Software Engineering June 2005

Reality Computing

“In the authors’
experience, designing
for flexibility first and

adjusting for timeliness
as proves necessary

is much more effective
than designing first
for timeliness and
subsequently for

flexibility.”

June 2005 www.stsc.hill.af.mil 21

Effective Practices for Object-Oriented System Software Architecting

and, consequently, create chaos rather
than success.

Spare Modeling
Models can be a very powerful tool in
working on a complex problem. Formal
models (see [6]) can support automated
checks for logical consistency and auto-
mated generation of effective test suites.
Visual representations can contain rich
semantics that are hard to convey in words
alone. When used judiciously, they are of
great value as an aid to communication
among developers, especially when gener-
ated quickly, informally, and cheaply.

However, the idea that a system
should be completely modeled using UML
diagrams is of dubious value, if not out-
right harmful. The cost of developing
and maintaining an extensive set of UML
diagrams for a system far outweighs its
benefit. The UML has been justifiably
called a cartoon [7] in that it is not seman-
tically sufficient to address all the nuances
that must be communicated to a tester or
coder. Development teams find it far too
easy to expend indefinite effort on UML
diagrams of arbitrary detail without any
assurance that these diagrams connect to
implementation reality.

Code, on the other hand, accompa-
nied by tests, is a good model (an executable
model) for clearly and unambiguously
expressing system behavior in detail. The
UML is much better used sparingly to
capture only key classes and relationships,
and critical execution paths [8].

Experienced OO Guides
If you have not climbed a mountain
before, you should really bring a guide
who knows the slopes, unless you lust for
the thrill of danger. Similarly, a serious
OO development effort should really
have at least one, if not a few developers
with extensive OO experience. If no
expert is available, plan to iterate and
redesign quite a lot (as discussed above)
as your development team learns the
ropes, or expect to churn indefinitely dur-
ing integration and test, trying to patch a
fragile, naïve design.

Not surprisingly, teams using OO
design for the first time usually fall back
on familiar, non-OO patterns. Each
developer defines a large controlling class
for the developer’s area of responsibility
that is all function (a functoid) and encap-
sulates no data. The data is thinly
wrapped in other classes that contain
only the data and access operations
(datoids). This design is essentially func-
tionally oriented, only superficially struc-
tured into classes and objects.

Conclusion
The recommendations in this article are
not really new, but their descriptions here
contrasted with typical pitfalls seen in
government contracting may help you to
better understand how to apply them to
good effect.

OO design and evolutionary develop-
ment fit well together. Many of the pit-
falls discussed here are characteristic of
programs practicing waterfall-style
processes. Attaining the potential benefits
of OO development is more difficult in a
waterfall process. The introduction of
OO to an organization should change
both its development practices and the
designs it produces for systems. If an
organization makes only superficial
changes (draws more diagrams or uses a
different programming language) then
what was the point of changing to OO
development?u

References
1. Software Productivity Consortium.

“Object-Oriented Approach for
Software-Intensive Systems (OOA-
SIS).” SPC-2000001-MC. Herndon,
VA: SPC, 2000 <www.software.
org/membersonly/ooasis>.

2. Evans, Eric. Domain-Driven Design:

Tackling Complexity in the Heart of
Software. Addison-Wesley Profes-
sional, 2003.

3. Cockburn, Alistair. Writing Effective
Use Cases. Addison-Wesley Profes-
sional, 2000.

4. Foote, Brian and Joseph Yoder. “Big
Ball of Mud.” Fourth Conference on
Patterns Languages of Programs,
Monticello, IL, Sept. 1997 <www.
laputan.org/mud/mud.html>.

5. U.S. Department of Defense. “DoD
5000 Series.” Washington: DoD, 2003
<http://akss.dau.mil/darc/darc.
html >.

6. Blackburn, Mark, Aaron Nauman,
Bob Busser, and Bryan Stensvad.
“Defect Identification with Model-
Based Test Automation.” Herndon,
VA: Software Productivity Consor-
tium, 2002 <www.software.org/pub/
taf/downloads/SAE_2003.pdf>.

7. Binder, Robert. Testing Object-
Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley Profes-
sional, 1999.

8. Ambler, Scott. Agile Modeling:
Effective Practices for eXtreme
Programming and the Unified
Process. John Wiley & Sons Canada,
Ltd., 2002.

About the Authors

Rich McCabe is a prin-
cipal member of the
technical staff at the
Systems and Software
Consortium (formerly
the Software Product-

ivity Consortium). McCabe co-authored
the consortium’s Object-Oriented
Approach to Software-Intensive Systems
(OOASIS) methodology. He also has
headed the consortium’s pioneering
work in the product-line approach for
systematic reuse since its inception in the
early 1990s. Outside the consortium, he
has nearly 15 years of software and sys-
tem development experience with Bell
Laboratories and other firms.

Systems and Software
Consortium
2214 Rock Hill RD
Herndon,VA 20170-4227
Phone: (703) 742-7289
Fax: (703) 742-7200
E-mail: mccabe@systemsand

software.org

Michael Polen is a sen-
ior member of the tech-
nical staff at the Systems
and Software Consor-
tium (formerly the
Software Productivity

Consortium). He co-authored the
Consortium’s Object-Oriented Ap-
proach to Software-Intensive Systems
(OOASIS) methodology and consults
with consortium members on their
practice. Lately, Polen has been merg-
ing OOASIS with agile techniques. He
has more than 14 years of software and
system development experience with
Motorola, Booz, Allen and Hamilton,
and other firms.

Systems and Software
Consortium
2214 Rock Hill RD
Herndon,VA 20170-4227
Phone: (703) 742-7281
Fax: (703) 742-7200
E-mail: polen@systemsand

software.org

Best Practices

Characterizing an organization’s best
software development practices can

optimally be described as those software
development practices that yield favorable
results, which are often measured by cus-
tomer satisfaction, reduced time to mar-
ket, decreased cost and better product
quality. This article will discuss how three
different organizations used a combina-
tion of quantitative measures and qualita-
tive values to identify their best practices.
Based on the knowledge gained, the
organizations used the results to improve
their development practices and/or to
advance their process improvement pro-
grams.

In each case, the desire to identify
their best practices was driven by senior
level management who wanted results that
would have a direct impact on stated busi-
ness goals and objectives. A summary
view of their business goals included the
following:

• Reduce project costs (mostly labor).
• Improve their time-to-market delivery

of software.
• Minimize defects delivered.
• Improve performance relative to

industry benchmark data points.
In all three cases (and in many other

companies), the organizational strategy to
achieve these goals was centered on quick-
fix approaches. Cost reduction frequently
tops the list and is usually the driving
force behind the decision to outsource
software development to an offshore
provider. Time to market is often reduced
by delivering fewer features to the end
user, thus reducing the development work
load. Defect minimization is too often
ignored. We know too well that quick-fix
remedies are not usually effective.
However, the alternative to achieving sus-
tained and measurable improvement can
be a hard pill to swallow. In order to
achieve the findings and the results noted

in the cases that follow, senior manage-
ment had a well-defined vision of what
they wanted to accomplish and had to
marshal the resources necessary to realize
the desired results.

The ability to properly set manage-
ment expectations and to gain their sup-
port was enhanced by the introduction of
a measurement model that objectively and
quantitatively generated meaningful
results.

Introducing the Measurement
Model
The key to successful performance man-
agement is performance measurement. As
the software industry grows out of its
infancy into a more mature set of prac-
tices, the inclusion of performance meas-
urement to manage and direct decisions is
becoming more of a mainstream practice.
Organizations long ago recognized the
need to establish strategic goals and objec-
tives; equally important, however, is the
identification of an appropriate set of
measures that provide quantitative evi-
dence that those goals and objectives have
been achieved.

A basic measurement model that has
been advanced by the Practical Software
and Systems Measurement program sug-
gests that an organization follow these
three steps:
• Identify the needs of the organization.
• Select measures appropriate to meas-

uring whether the needs have been
met.

• Integrate measurement into the soft-
ware development process.
In each of the three cases examined in

this article, the management championing
the initiative had identified the needs of
their organization. Our effort began when
management requested our help in select-
ing the appropriate measures and creating
a measurement model that would result in
the quantification of process perform-

Identifying Your Organization’s Best Practices
David Herron and David Garmus

The David Consulting Group

As organizations strive to improve the design, development, and delivery of software solutions, an effective combination of
processes, tools, and methods is critical. Finding the right combination requires careful analysis of the variables that influence
gains in productivity and quality. By utilizing industry benchmark data and performance indicators, organizations can col-
lect and analyze their own data to determine the combination of processes, tools, and methods that provide the greatest impact
on their performance. This article reports on three client case studies that incorporated various measurement techniques to
determine best practices.

22 CROSSTALK The Journal of Defense Software Engineering June 2005

Figure 1: Basic Measurement Model

June 2005 www.stsc.hill.af.mil 23

ance levels. Furthermore, we were called
upon to utilize a measurement model that
would provide the ability to compare
internal performance measures to indus-
try benchmark levels of performance.

The basic measurement model we
used included the collection and analysis
of both quantitative and qualitative ele-
ments (see Figure 1). The quantitative ele-
ments included four basic measures: size,
effort, duration, and defects. The qualita-
tive elements included a variety of data
points that were used to evaluate levels of
competency regarding process, methods,
skills, automation, technology, and man-
agement practices.

Collected on a project-by-project
basis, quantitative data can be displayed in
a measured profile that indicates how well
a project is performing. Standard industry
measures such as function points (FPs)
per person month (PM), defect density
and time to market must be calculated. If
FPs are used to measure project size, there
is an opportunity to make comparisons to
industry data points that are also based on
FPs.

The qualitative data (again collected
on a project-by-project basis) results in a
matching capability profile. This profile
data identifies the attributes that con-
tribute to high or low yields of perform-
ance, such as those indicated in Table 1.

These two elements (quantitative and
qualitative) come together to form what is
commonly viewed as an organization’s
baseline of performance. The baseline
values are compiled from a selection of
measured projects and represent the over-
all performance level of the organization.

Results vary significantly. Some proj-
ects perform very well (i.e., they have low
cost and high quality), and other projects
do not. The quantitative data provides
senior management with an objective
view of current performance levels. The
qualitative data provides the opportunity
to examine the attributes of the projects
to determine why certain projects have
outperformed others. This analysis effort
leads an organization to the identification
of their best practices and opportunities
for improvement.

The following three case studies used
this baseline approach in one form or
another. The presentation of the results
for each of the case studies varies due to
the nature of each unique engagement
and how the client wanted the informa-
tion displayed. There is no magic or silver-
bullet discovery (as you will see). Basic
measures, applied through a practical
baseline model, provided senior manage-
ment with the information they needed to

make a more informed decision.

Case Study 1: Large Financial
Institution
Objective: Identify characteristics of
high performing projects.
Scope: Conduct an organization-wide
baseline study.
Collection and Analysis: Data (quantita-
tive and qualitative) was collected on 65
completed projects. Productivity rates,
expressed in terms of FPs per staff
month, were calculated along with three
other base measures: duration, resource
utilization, and cost. The results were
divided into two categories (high per-
forming projects and low performing
projects), and an average was calculated
for each category as indicated in Table 2:

The data demonstrated that high-per-
forming projects produced (on average)
more functionality (148 FPs) in a shorter
timeframe (five months) with a modest
increase in staffing levels to 2.4.

Qualitative data (attributes about each
project) was collected, and profiles of per-
formance were developed that identified
characteristics consistently present in the
higher performing projects, but limited or
absent from the lower performing proj-

ects. These sets of attributes were then
considered to be the leading factors that
contributed to higher performing proj-
ects.

The findings listed in Table 3 below
indicate the attributes and their frequency
of occurrence (percent) in the high- and
low-performing projects.

Case Study 2: Midsize
Insurance Organization
Objective: Benchmark comparison to
industry averages and best practices.
Identify best practices opportunities.
Scope: Conduct a baseline study using 25
selected projects.
Collection and Analysis: Measurement
baseline data was collected and analyzed
to produce performance indicators such
as those in the first case study. After deter-

Table 1: Capability Profile Attributes

Table 2: Case Study 1 Results

Table 3: Case Study 1 Findings

Identifying Your Organization’s Best Practices

mining the current level of performance, a
comparison to industry average and indus-
try best practices benchmarks was con-
ducted. The results are shown in Table 4.

We examined these data points and
analyzed the underlying profile data.
Within this sampling of projects, the
client’s productivity rate was close to the
industry average (6.9 versus 7.26); howev-
er, plenty of opportunity for improve-
ment still existed as evidenced by the best
practices benchmark. The client was actu-
ally delivering products (on average) in a
shorter timeframe than industry average,
and again there was opportunity to
improve as the organization moved
towards best practices thresholds. Finally,
the level of quality (defect density) was
significantly below industry data points.

Looking at the findings in this picture
(see Table 5), we observed an organization
that was getting their software product
out the door quickly by increasing staffing
levels and shortcutting quality practices.
This was further substantiated by evaluat-
ing the attributes that were the most com-
mon and those that were the most con-
spicuous by their absence.

These common occurrences in Table 5
refer to practices that the client was

already executing. Our analysis suggested
that if the client were to focus on the
infrequent or absent practices noted in
Table 5, they would see a substantial
improvement in their level of quality with-
out sacrificing productivity or duration.

Case Study 3: Large Service
Organization
Objective: Identify impact of moving to
the Software Engineering Institute’s Ca-
pability Maturity Model® (CMM®) Level 3.
Scope: Perform baseline measures on a
sample set of representative projects.
Collection and Analysis: The final case
study involved an organization that want-
ed to estimate the impact that a CMM
Level 3 process improvement initiative
would have on their performance. They
attributed the process areas associated
with CMM Level 3 to best practices. To
model this improvement, the organization
had to first determine its current baseline
of performance and establish a composite
profile of contributing attributes.

Project data was again collected and
analyzed. Averages for size (FPs), produc-
tivity (FPs per effort month [EM]), dura-
tion (calendar months), and cost (labor)
were computed. Using a composite pro-

file, a mapping of the current project
attributes for the organization was devel-
oped. In parallel, another model was
developed for projects of a similar size
with a mapping of attributes that matched
a CMM Level 3 organization. A modeling
tool – Predictor from DDB Software, Inc.
– was used to accomplish the modeling.
Predictor contains a series of algorithms
that are used to calculate productivity lev-
els such as those noted in the findings in
Table 6 for the CMM productivity
improvements. The values within
Predictor are based upon the statistical
analysis of software process attributes
from more than 8,700 client projects.

The projected impact of CMM Level
3 practices for this organization was sig-
nificant. For the same size project, pro-
ductivity (FP/EM) was projected to
increase by 132 percent, time-to-market
reduced by 50 percent, cost reduction by
40 percent and defect density reduced by
75 percent. This modeling technique
helped this organization evaluate the
potential benefits of CMM process
improvement.

The potential impact indicated above
may appear to be dramatic, but that is a
matter of perspective. Certainly, this sig-
nificant gain in productivity and reduction
in defects would exceed most expecta-
tions; however, if the baseline productivi-
ty were dramatically below industry aver-
ages based on the nature of the process
profile, then clearly large gains could and
should be expected.

In Summary
These three case studies exhibit a variety
of ways in which measurement data can
be used to learn more about the following:
• An organization’s level of perform-

ance.
• Key factors that contribute to high or

low productivity yields.
• The level of performance as com-

pared to industry data points.
• The potential impact of strategic ini-

tiatives through the use of perform-
ance modeling.
Utilizing a measurement model that

includes both a quantitative perspective
and a qualitative perspective is most
important. It is from this vantage point
that an organization can access both the
measured performance profiles along
with an understanding of the process
profile elements that contributed to the
results. The process profiles have the
added advantage of recommending a

Best Practices

24 CROSSTALK The Journal of Defense Software Engineering June 2005

Table 4: Case Study 2 Performance Indicators Comparison

Table 6: Case Study 3 Productivity Levels

Table 5: Case Study 2 Presence or Absence of Attributes

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

Identifying Your Organization s Best Practices

June 2005 www.stsc.hill.af.mil 25

direction for future improvement
strategies.

In reviewing the experiences and
results from these three client case stud-
ies, readers should not assume that similar
outcomes would be achieved in their
organizations. The prudent action would
be to take your own measures and create
your own organizational performance
baseline. Utilizing industry-accepted

measures such as FPs will allow you to
perform the necessary comparative analy-
sis. The investment in a baseline study is
relatively insignificant in comparison to
the value of the information gained. Of
course, the return on that investment can
be realized only with the proper execution
of improved software development prac-
tices.u

About the Authors

David Herron is co-
principal and co-founder
of The David Consulting
Group. He is an ac-
knowledged authority in
using metrics to help

organizations monitor the impact of
Information Technology (IT), the ad-
vancement of IT organizations to high-
er levels on the Software Engineering
Institute Capability Maturity Model®,
and the governance of outsourcing
arrangements. Herron assists clients in
establishing software measurement,
process improvement, and quality pro-
grams and to enhance their project man-
agement techniques. He has more than
25 years experience in managing, devel-
oping, and maintaining computer soft-
ware systems. Herron serves as a Cutter
Consortium Expert Consultant and is
past chair of the International Function
Point Users Group (IFPUG) Manage-
ment Reporting Committee, a member
of the IFPUG IT Performance
Committee, and a member of the
American Society for Quality. He is a co-
author of “Measuring the Software
Process: A Practical Guide to Functional
Measurement,” and “Function Point
Analysis: Measurement Practices for
Successful Software Projects,” and has
contributed numerous articles to indus-
try publications and lectured worldwide
on functional measures. He attended
Union College and Northeastern
University.

The David Consulting Group
19 Point View DR
Medford, NJ 08055
Phone: (609) 654-6227
Fax: (609) 654-2338
E-mail: dcgherron@comcast.net

David Garmus is co-
principal and co-founder
of The David Consult-
ing Group. He is an
acknowledged authority
in the sizing, measure-

ment, and estimation of software
application development and mainte-
nance. He has more than 25 years of
experience in managing, developing,
and maintaining computer software
systems. Concurrently, he served as a
university instructor in computer pro-
gramming, system development, infor-
mation systems management, data pro-
cessing, accounting, finance, and bank-
ing. Garmus is past president of the
International Function Point Users
Group (IFPUG) and a member of the
Counting Practices Committee. He
previously served IFPUG as chair of
the Certification Committee, as chair
of the New Environments Committee,
and on the Board of Directors as direc-
tor of Applied Programs and vice pres-
ident. Garmus is co-author of
“Measuring the Software Process: A
Practical Guide to Functional Mea-
surement,” and “Function Point Analy-
sis: Measurement Practices for Suc-
cessful Software Projects,” and has
contributed numerous articles to
industry publications and lectured
worldwide on functional measures. He
has a Bachelor of Science from the
University of California Los Angeles
and a master’s degree in business ad-
ministration from Harvard University.

The David Consulting Group
1935 Salt Myrtle LN
Orange Park, FL 32003
Phone: (904) 269-0211
Fax: (904) 215-0444
E-mail: dcg_dg@comcast.net

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JAN2004 c INFO FROM SR. LEADERSHIP

MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUN2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Software Engineering Technology

In this article, I will discuss an activity
related to both commercial off-the-

shelf (COTS) and custom software devel-
opment that I believe is not often
addressed in practice. This activity, often
ignored, is the capture, sustainment, and
viewing of application-specific knowledge
that is generated and acquired by the
development associated staff during the
course of a development project for the
benefit of the sustainment programmers
and staff. I will also discuss enablers for
addressing this shortcoming.

Undocumented, Poorly
Documented, and
Work-Around Features
Before proceeding further, I need to define
what I mean by COTS and custom soft-
ware. By COTS software development, I
mean customization of COTS systems
such as Microsoft Office Suite, Siebel
Systems Customer Relationship Manage-
ment software suite of products, SAP,
TeamCenter Enterprise (aka Metaphase)
from Unigraphics Solutions, and so on. By
custom software development, I mean the
development of a software system from
scratch but admitting the incorporations of
some third-party COTS products such as
(class) libraries, application frameworks,
and so on. I will note here that, as others
have observed, the distinction between
COTS and custom is not rigid; a C lan-
guage compiler and linker may be viewed
as the simplest (lowest) COTS application.

Regardless of the rigor in the definition
of COTS versus custom applications, it has
been my observation that the development
staff encounters and resolves a number of
issues during the course of the develop-
ment phase that are of great value to the
sustainment phase of the system’s life
cycle. The development staff often takes
advantage of undocumented, poorly docu-
mented, or defect work-around features
involving the following:
1. COTS Application Programming

Interfaces (API).
2. COTS Data Model.

3. Other (third-party) COTS API and
Data Models.

4. Vendor-/Version-Specific Operating
System.

5. Vendor-/Version-Specific Middleware
(class libraries, frameworks, etc.).

6. Network Protocol and Environment.
7. Vendor-/Version-Specific Backend

Database.
This is done to meet the business/tech-

nical requirements of the software system
being constructed. Often, there is no other
way than to use these features to meet the
delivery deadlines of the system. And, con-
trary to a popular belief among develop-
ment managers, COTS application devel-
opment is also subject to the above consid-
erations.

More crucially, the evolution of the
ingredients that have gone into building the
system, from software add-ons to the oper-
ating environment, may cause some or all
of the undocumented features, poorly doc-
umented features, or work-around to no
longer pertain to a new release of a partic-
ular building block of the system.
Consequently, the system may undergo sig-
nificant performance degradations or cease
to properly function altogether. The exis-
tence of such a knowledge base will go a
long way to expedite the resolution of such
problems in production.

You must also note that it is most often
the case that the knowledge of these fea-
tures and development shortcuts becomes
disseminated among the development staff
as a sort of tribal knowledge.
Unfortunately, this tribal knowledge is usu-
ally lost when the system is turned over
from the development staff to the sustain-
ment staff and the development tribe is
reassigned, or dissolved (which is more
likely the case). Thus, further evolution of
the system during its sustainment phase
could be compromised due to the unavail-
ability of this knowledge base of tribal
know how.

The usage of these undocumented,
poorly documented, or defect work-around
features is normally not captured in the

technical design documentation. The tech-
nical design documents are seldom revised
during the course of a typical development
project and often are not detailed enough
to even provide space for capturing this
type of knowledge.

In programming practice, some of this
knowledge could be available in the form
of source file comments. Even then we are
facing the challenges that the individual
developer may or may not have provided
useful comments, or that the comments
may or may not be relevant to the current
code revision. Additionally, when these fea-
tures are in different technical areas, for
example API as opposed to data model,
they cannot, even in principle, be captured
as part of the code (the code-as-documen-
tation crowd notwithstanding). In fact, in
such cases, often different individuals or
groups are leveraging these undocument-
ed/poorly documented features and thus,
are unaware of one another’s work. This
makes capturing this information in a com-
mon technical documentation and format
more challenging, but at the same time,
more crucial.

Application-Specific
Knowledge Bases
It is suggested that an effort be made to
develop a knowledge base for the system
being built during the development phase
of the system. This knowledge base should
be able to capture the following:
1. Undocumented features used in devel-

oping the system.
2. Poorly documented features used in

developing the system.
3. Defect work-around features used in

developing the system.
4. Version/patch information of the

building blocks of the system.
5. Implemented kludges.
6. Discussion of the technical reasons for

using these features.
7. Things that could go wrong if these

features cease to work in a future
release.

8. Recommendations for replacing these

Application-Specific Knowledge Bases
Dr. Babak Makkinejad
Electronic Data Systems

It is suggested that companies create and maintain a searchable knowledge base to capture specific issues that are encountered
and resolved during commercial off-the-shelf and custom software development projects. Such a knowledge base could benefit
the current development staff, the future sustainment staff, and the testing staff, hence facilitating further evolution of the sys-
tem during its life cycle.

26 CROSSTALK The Journal of Defense Software Engineering June 2005

June 2005 www.stsc.hill.af.mil 27

features in future releases.
9. Date and time stamp for all entries in

the knowledge base.
10. Preferred methods for incorporating

features used in developing the system.
11. Standards and guidelines that should be

used to govern system development.
This type of knowledge base must be

distinguished from a frequently asked ques-
tions or a technical design document. It
should be thought of as an undocumented cor-
ner magazine column, a pitfalls list, or a
compilation of programmer’s shortcuts. It can
be thought of as a small analogue of the
large, product knowledge bases that ven-
dors such as IBM, Oracle, Sun, Microsoft
and others supply.

While such large knowledge bases are
for commercial products, the knowledge
bases discussed in this article pertain to
specific applications produced for specific
clients and hence the phrase: application-spe-
cific knowledge bases. And, in an analogous
manner, these application-specific knowl-
edge bases are conceived to be easily acces-
sible and searchable.

An application-specific knowledge
base is thus an enabler for expediting the
resolution of defects and in assessing the
risks involved in the evolution of specific
systems as requirements, building blocks,
and operating environment evolve over
time. Both the technical development staff
and the business staff will be consumers
of this information for technical and busi-
ness purposes.

This type of knowledge base must be
distinguished from a defect tracking/help
desk system. Although some or all of the
issues and knowledge captured in applica-
tion-specific knowledge bases may already
exist in a defect tracking system, they are
not there in a usable format. More infor-
mation on this follows.

Challenges to Adoption
There are two challenges with realizing the
above vision. Perhaps the most significant
barrier to adoption of this practice as part
of the software engineering process is the
development staff buy-in. In many cases,
members of the development staff are
required to supply/update documentation
that, in their minds, has no value. In fact,
many development staff members consid-
er much of the documentation effort mis-
placed and non-value-added.

Another major impediment to develop-
er buy-in is the time factor; development
staff is typically under so much time pres-
sure that they cannot find time to create
what they perceive as an additional system
(the knowledge base) beyond the system
they are funded and allocated to create.

Additionally, in many instances the devel-
opment staff is not going to be around for
the sustainment phase. It is a leadership
challenge to motivate the development
staff and inspire them to do a great job and
to facilitate the activities of the sustainment
staff.

Perhaps the best way to proceed is to
periodically ask the development staff to
supply a list of items that they feel will be
important to know for the sustainment
phase in free form. Then as part of the
process of software documentation, one
can compile these inputs into a knowledge
base as part of the key deliverables of the
system.

The other challenge is the packaging
and delivery of this knowledge base. For
the knowledge base to be useful, it must
satisfy the following criteria:

1. Be easily accessible. The user should
be able to get to the knowledge base
without having to navigate a hierarchy
of network folders or Web-based
pages. Nor should he or she have to
look for a specific file among numerous
electronic documents for the informa-
tion that he needs.

2. Be easily searchable. The user should
not have to use Global Regular
Expression Parser or the Search feature
of the operating system to look up the
information for which he is searching.

3. Be easily navigable. The user should
be able to easily and painlessly move
from one item to the next relevant item.

4. Be easily updateable. The knowledge
base should be easily updateable to

reflect the changes to the software, its
building blocks, and its operating envi-
ronment.

5. Be portable. The user should be able
to view the information without having
to be hooked to the enterprise network;
it must be accessible in a disconnected
mode from a portable computing
device. This is an essential feature for
certain class of applications that require
on-site support.

6. Be secure. Unauthorized access to use
the knowledge base for malicious pur-
poses must be prevented.
One approach will be to utilize the

same COTS tools that have been used for
building, updating, and maintaining the
software’s help system to deliver such an
application-specific knowledge base. These
tools are often multi-platform, thus
enabling the development of a knowledge
base that can be made to satisfy all of the
criteria above. These types of systems are
easily searchable, often use hypertext to
provide navigable links, can be edited by
using a word processor, and are portable.
Unfortunately, this is a heavyweight
approach since it requires knowledge of
the specific help system creation tool, and
the effort itself will become part of the
cost of the development.

The next best candidate for the deploy-
ment of such a knowledge base will be to
leverage an existing defect tracking/help
desk system by augmenting it with the
development staff ’s issues and resolutions.
With this approach you have the added
challenge of customizing the defect track-
ing system to distinguish among generic
defects and the application-specific gotchas
of the knowledge base. It must keep track
of the requirements, building block revi-
sions, patches, and changes to the operat-
ing environment that pertain to the items
captured in the knowledge base.

Unfortunately, even though most tools
are, in principle, capable of satisfying a
number of the above criteria, they do not
satisfy them all. Specifically, in the areas of
navigability and portability, they leave much
to be desired. While the navigability criteri-
on may be addressed with the addition of
Google-like features, the portability will
always be an issue for most of these cen-
tralized systems.

The simplest approach, which is quite
doable and lightweight to develop and
deploy, is to create a hypertext markup
language (HTML) document that will con-
tain the knowledge base. In this approach,
all that is needed is a text editor and staff
who are knowledgeable in HTML; expen-
sive development tools will not be
required. This approach satisfies the first

“The technical design
documents are seldom

revised during the course
of a typical development
project and often are not

detailed enough to
even provide space
for capturing this

type [undocumented,
poorly documented,

or work-around]
of knowledge.”

Application-Specific Knowledge Bases

five criteria above.
The three approaches above all require

additional developer interactions that are
specific to the knowledge base. They add to
the development effort and cost. There is
an alternative approach to developing the
knowledge base that leverages a common
activity that occurs during the course of a
development project; that is, team members
send one another e-mails discussing the
problems they need to solve, how to work
around limitations of the tools, etc. In fact,
on the Internet, the archival and current
material in technical discussion forums
serves exactly the same purpose. I am sug-
gesting archiving the e-mail exchanges of
developers for the sustainment phase.

This developer e-mail base, plus the
other documents that are created and
assembled by the development team is, in
effect, a knowledge base that can be a
resource for sustainment staff. To leverage
this naturally created knowledge base, you
need a generic, straightforward method to
capture this source of information at the
end of a development project and make it
available to and easily searchable by the
sustainment team.

This would entail using the built-in
archiving functions of the messaging sever
at project start-up, followed by the search
capabilities of the e-mail client itself such
as Microsoft Outlook on a .pst file. In fact,
there are currently e-mail clients that sup-
port something akin to Google to search e-
mails, for example, Bloomba at
<www.statalabs.com>. In this manner, you
may enable the sustainment staff to quick-

ly find information (or, at least, clues)
about how specific problems were solved
by the development staff.

The sixth criterion, the security
requirement, is a challenge for all
approaches. For those applications that
will have their own security features, access
to the knowledge base may be controlled
by leveraging the application’s own securi-
ty features. In other cases, you must con-
sider the details of secure access to the
knowledge base and assess the risks
involved in unauthorized access to this
data. While 100 percent security is not
even theoretically achievable, a judicious
approach to access control and distribu-
tion lists should largely mitigate the securi-
ty concerns related to the knowledge base.

Conclusion
I believe it a good idea to canvas the devel-
opment staff for issues that pertain to
using undocumented, poorly documented,
defect work-around, kludges, and gotchas
that have been encountered and/or lever-
aged during the course of system construc-
tion for both COTS and custom applica-
tion. I further conceive of the utility of
compiling that input into an application-
specific knowledge base for consumption
by the technical and business staff during
the sustainment phase of the system.

Although there are multiple cost-effec-
tive techniques for packaging and enabling
such a knowledge base based on available
commercial tools, I favor capturing e-mail
exchanges as the most lightweight method.
Since the amount of data in the knowledge

base is necessarily limited to the develop-
ment phase, key word searches will not be
as tedious as on the Internet since the num-
ber of hits would be either small or none
at all.

Finally, I believe that human factor
issues are the greatest barrier to develop-
ing and deploying such a system. I respect-
fully urge the project leadership in the
information technology industry to make
a concerted effort to supply the necessary
positive motivations for this effort to
become practicable. We owe this to those
who come after us to sustain the systems
that we are producing today.u

28 CROSSTALK The Journal of Defense Software Engineering June 2005

Software Engineering Technology

About the Author

Babak Makkinejad,
Ph.D., is a consultant
with Electronic Data
Systems. He has worked
in the areas of computa-
tional physics, computer

graphics, image processing, and enter-
prise software development. Makkinejad
has a doctorate in theoretical physics
from the University of Michigan in Ann
Arbor.

Electronic Data Systems
5555 New King ST
Troy, MI 48098
Phone: (248) 696-2311
Fax: (248) 696-2590
E-mail:babak.makkinejad@eds.com

Knowledge Management and Process
Improvement:A Union of Two Disciplines

Gregory D. Burke
Federal Aviation Administration

William H. Howard
Northrop Grumman Mission Systems

The experience at the Federal Aviation Administration (FAA)
shows that process improvement and knowledge management
complement each other well. Process improvement helps the
organization increase its effectiveness through continuous exam-
ination with a view to doing things better. Once processes are
documented, roles and responsibilities are readily identified and
associated activities are performed. Legacy processes are modified
to reflect organizational changes. Knowledge management facili-
tates communication among organizations, increasing informa-
tion sharing and utilizing process documentation. This informa-

tion sharing promotes organizational unity and allows FAA head-
quarters and regional operations to function efficiently.

Connecting Earned Value to the Schedule
Walt Lipke

Tinker Air Force Base
For project cost, analysts can predict the final value with some
confidence using the Independent Estimate at Completion
(IEAC) formulas from Earned Value Management (EVM).
However, EVM does not provide IEAC-like formulas by which
to predict the final duration of a project; many express the opin-
ion that schedule information derived from EVM is of little
value. This article discusses the problem and develops a method-
ology for calculating the predicted project duration using EVM
data. The methodology uses the concept of Earned Schedule and
introduces an additional measure required for the calculation.

MORE ONLINE FROM CROSSTALK

ThCrossTalk is pleased to bring you additional articles with full text at <www.hill.af.mil/crosstalk/2005/06/index.html>.

In June 2003, I suffered an unusual spinal
cord injury. A blood vessel burst inside

the cord on the first day of a three-week
vacation in Alaska. I ended up in the hospi-
tal in Anchorage and then was flown home
to Kansas City. The author promises this
will not deteriorate into a maudlin journey
of self-discovery, but if it does, readers are
encouraged to send angry messages to the
author.

The initial diagnosis was pretty grim. It
looked like I would be paralyzed from the
waist down, but after flying home and hav-
ing surgery to remove the resulting blood
clot from the cord, the diagnosis changed. I
started to hear things about taking small
steps, measuring progress and focusing on
continuous improvement with no certainty
of the end result. It sounded very familiar.

At work, I have served as a member of
the Software Engineering Process Group
(SEPG) for the last 10 years. Suddenly, I had
to apply all the tools from my role as an
SEPG member to myself. Talk about a rude
awakening! Before this, I could tell other
people what was wrong and leave them to
fix it. Now, I actually had to do all the things
I told other people to do.

I found that the therapy process
involved in recovering from physical injury
maps closely to the process involved in heal-
ing an organization’s process injury. A ther-
apist’s tools of empathy, encouragement,
humor, challenge and success in the achieve-
ment of others fit a process improvement
change agent’s role perfectly.

This article will show how planning, a
good therapist, collaborative effort and
measurement all play a role in helping
organizations recover from a process injury.

Background
Before my injury, I ran, played softball, and
played soccer. My wife and I spent our
annual vacations camping and hiking in
national parks. Suddenly everything
changed. I received a sudden shock that a
system or a process could break down unex-
pectedly. Organizations that have success-
fully put out software can experience the
same thing when they see results slipping,
experience a major system crash, suddenly

miss a major deadline or lose a customer.
That’s when the questions start: What hap-
pened? Wasn’t everything okay? How could
that happen? Why didn’t I see any signs?

Diagnosis
The first thing to do in the case of an injury
is to diagnose what happened. In my case,
that involved MRIs, CT scans, and surgery.
For an organization, a process assessment
and a process improvement model are need-
ed. In the case of a physical injury, doctors
compare diagnostic results with the models
they have of how the human body should
work. The Capability Maturity Model®

(CMM®) for Software and CMM
IntegrationSM provide models of how an
organization should work. The diagnostic
tools associated with each of these models
are the assessment methods. At first, expert
diagnostic help is important. However, an
organization should not rely entirely on out-
side help. It should train some of its own
people in the model and provide them expe-
rience in using the assessment methodology.

Assessments can be formal or informal.
In the initial stages of diagnosis, an informal
assessment can provide a good first look at
identifying problem areas. Rather than focus
on the process improvement models, an
organization should focus on its problems.
By addressing the problems, satisfaction of
the selected model comes more naturally. As
I started to get some function back in my
legs, I did not need to know that I had inad-
equate ankle dorsiflexion. I needed to know
the exercises to strengthen the muscles that
bend my ankle. The models are best used as
references to help address problems.

Treatment/Therapy
Immediately following my surgery, I began a
long road of therapy to literally get back on
my feet. It was obvious from the beginning
that my doctors and therapists had a plan
for my recovery. Once again, it all sounded
very familiar to me. In fact, one day my boss
was visiting me when my therapy doctor
came through. The doctor explained that
they established a scoring chart for therapy
patients to evaluate when they were ready to
go home. He also stated that he and I would

meet weekly with the head nurse, my insur-
ance caseworker, and my occupational and
physical therapists. The meeting would
review every aspect of my case and update
my score against their plan for my recovery.

My boss said, “Don’t get him started.”
After all, our SEPG had been the one to
encourage meeting management and using
metric information to make decisions. I
think he was afraid I might try to improve
the hospital’s processes.

The need for process therapy often
stems from a trauma of some kind. An
organization’s immediate reaction is that the
situation needs to be fixed. This might cre-
ate a flurry of activity that is short-lived if a
quick fix is found. The key for the process
therapist is to find the underlying reasons
for the trauma and address them. By doing
this, the therapist can build a foundation for
long lasting improvement.

My therapy began immediately with an
evaluation by both therapists. Each of them
measured what I was physically capable of
doing before we got started. This gave them
a baseline of what to expect and provided a
mark against which they could compare my
improvement. It bore great similarities to
taking an initial snapshot of where a project
stands, as determined by the diagnostic assess-
ment, before embarking on rehabilitating its
processes. The therapists had a target goal in
mind, just as an organization often has a tar-
get maturity level or performance goals. As
change agents, the therapists laid out a series
of steps to get me on the right track.

Process therapists must also focus on the
steps an organization needs to build lasting
improvement and reach improvement goals.
Whether those goals relate to a maturity level
or a performance goal, a planned approach
to addressing specific items is critical.
Sometimes these items are not directly relat-
ed to the process improvement model. Often
they involve related organizational issues that
affect how the change will happen.

In my case, learning to get dressed was
the issue, but I needed to improve my flexi-
bility before I could do certain things. Just

Process Therapy
Paul Kimmerly

Defense Finance and Accounting Service

Over a year ago, the author suffered a spinal cord injury that required surgery, an extended hospital stay, therapy, and a trip
into the medical sub-culture. This article looks at process improvement and relates it to the author’s experiences recovering
from his injury. If an organization’s process is injured, process therapists using the diagnostic and treatment tools at their dis-
posal can help lead an organization to recovery.

June 2005 www.stsc.hill.af.mil 29

Open Forum

SM CMM Integration is a service mark of Carnegie Mellon
University.

like an organization, I resisted. It took some
patience and some prodding on my thera-
pist’s part, but I got to where I could stretch
as needed.

Process therapists need to use the same
kind of sometimes gentle, sometimes firm
persuasion to keep an organization moving
towards reaching its goal. They also need to
look for the underlying reasons for the
resistance. The unwritten rules or norms for
the organization can come into conflict with
the process improvement goals. The process
therapist needs to be prepared to deal with
any covert resistance.

Open resistance is easier to identify and
to address. Covert resistance can sabotage
improvement efforts. Unexpected results
often highlight covert resistance. Process
therapists should monitor results and
actions after process improvements are
agreed upon and implemented.

A key item that had to be in place was
my desire to get better. For process
improvement to work in an organization,
the organization has to want to change. In
my recovery, I had to mentally accept that I
needed to change, and I had to focus on get-
ting better. It is the same for an organiza-
tion. The organization needs a manager who
understands the need and sees the benefits
of change. By identifying such a champion,
the organization will ensure itself of future
improvement. The champion can help the
therapist overcome resistance by enforcing
agreements and voicing commitment to the
improvements.

A therapist always likes a willing patient
and can use that patient to show others the
way to succeed. Unfortunately, not everyone
wants to get better. Some think the status
quo is fine or the therapy is too hard. That
kind of thinking leads to resistance.
Resistance comes from a variety of sources
and the therapist has to be ready to respond.
There were times I resisted my therapists,
but they were few. That helped me succeed
in my recovery.

I saw a number of patients fighting
against their therapists or not doing the
work between sessions that the therapists
encouraged. As a result, their recovery did
not progress as far as quickly. This was evi-
denced by false starts and repeating the
same exercises over and over again.
Organizations can see the same kind of
results. False starts plague improvement
efforts that do not have the necessary cham-
pion or commitment to change. The thera-
pist needs to set up an improvement regi-
men and stick to it. Even if the organization
wants to resist, the therapist must continue
to exhibit the desired behavior and stick to
the plan.

A little challenge can be a healthy thing

for the patient. Process therapists need to
challenge the organization to keep going
one step further to ensure continuous
improvement. A challenge can also help
push an organization through plateaus. My
physical therapist was sometimes subtle;
when we would walk, he would stay just
ahead of me to make me pick up my pace
and try harder to keep up. I knew what he
was doing, but it worked anyway.

Process therapists need to find ways to
keep the organization moving forward.
Regular appointments with managers pro-
vide important opportunities to discuss
treatment and review progress. It is vital that
the process therapists talk to people within
the organization and look at measurement
data to gather information to present to
management. It helps to identify the key
issues for a manager and use them to find a
way to keep the organization focused on
improvement. If a process therapist can
find ways to address those issues or provide
information about them, a manager will pay
close attention.

Another important thing for the patient
and the organization is to check their pride
at the door. During my hospital stay, it
seemed like everybody got to see or know
about everything. I had no secrets by the
time I left. One nurse tried to make small
talk while we worked our way through the
situation. It turned out that I worked with
her husband. Great! All I could say in that
awkward and uncomfortable moment was,
“Oh ... uh ... tell Steve I said ‘Hi’.”

Organizations will have those embar-
rassing moments too. An organization will
find things out that it did not want to know.
The organization may find them out in front
of a senior manager. At those times, the
process therapist must be supportive and
help the organization work through the sit-
uation. The difficult times can lead to frus-
tration when a patient will want to shut
down. The therapist has to anticipate these
situations and plan how to address them. It
may come down to helping an organization
gather data so it is better prepared when fac-
ing a potentially embarrassing situation. If
the process therapists can help an organiza-
tion find out some fundamental information
about itself, they can help it use that infor-
mation to its advantage.

Lastly, the process therapists should be
willing and able to demonstrate the desired
behavior to the patient to speak from expe-
rience and show empathy for what the
patient is facing. A good place to start is
meeting management. Many organizations
suffer from free-form stream of conscious-
ness meetings that lead nowhere. Process
therapists should encourage good meeting
behavior by using agendas and meeting min-

utes for any meeting they lead. By demon-
strating the desired behavior, a process ther-
apist can influence the organization.

Summary
After my injury, I recognized that I was
going through all of the stages I learned to
look for in an organization when trying to
bring change. Recognizing the similarities
between my life-altering event and my work
helped me get some ideas for improving
myself based on what I had learned bring-
ing improvement to my organization.

Process therapists should look for ways
to help an organization improve, just like the
physical therapists helped me. The recovery
starts with the diagnosis of the problem and
a plan to address it. From there, the thera-
pist has to know their patient and create
ways to effectively target the small steps in
improvement. Throw the model away for a
while because the technical terms can scare
off a patient. Use terms the patient knows.
Talk about problems, not the model’s jar-
gon. The achievement of process improve-
ment goals requires buy-in by the organiza-
tion and persistence by the therapist. If the
organization resists or suffers some embar-
rassing setbacks, the therapist needs to find
creative ways to work through them. Above
all, a therapist must demonstrate they know
the problems and can empathize with the
patient.u

30 CROSSTALK The Journal of Defense Software Engineering June 2005

Open Forum

About the Author

Paul Kimmerly has 16
years experience in soft-
ware development for
the different incarna-
tions of the Defense
Finance and Account-

ing Service Technology Services
Organization. A member of the
Software Engineering Process Group
since 1993, he currently serves as the
group’s chair. Kimmerly is an author-
ized Capability Maturity Model®

IntegrationSM Assessment Method for
Process Improvement Lead Appraiser.
He has written several articles on
process improvement for CrossTalk.

DFAS-KC/TKZ
1500 E 95th ST
Kansas City, MO 64197
Phone: (816) 926-5364
DSN: 465-5364
Fax: (816) 926-6969
DSN Fax: 465-6969
E-mail: paul.j.kimmerly@dfas.mil

BACKTALK

June 2005 www.stsc.hill.af.mil 31

It’s April. Time for the annual Systems
and Software Technology Conference,

and I’m sitting on another airline flight
writing a BackTalk column. Some
things don’t change much. On the other
hand, some do.

I am flying to Salt Lake City from
Detroit, where I teach college part-time.
For the past 10 years, I have flown into
and out of Detroit, usually on Delta air-
lines. For the last nine years, Delta has
used the L.C. Smith Terminal – an older
terminal, but convenient. To fly out, rental
car busses dropped you off near the tick-
et counter; it was a short walk to the gate.
Flying in was a breeze – the luggage pick-
up was within 50 yards of the rental car
pickup.

Last month, in an effort to upgrade,
the Detroit airport has expanded its new
terminal, and Delta has relocated there.
The new terminal is both modern and
pretty, but not as functional. You have to
walk about a mile to get from the ticket
counter to the gate, or back from the gate
to the luggage pickup. To get from rental
car drop-off to the ticket counter involves
walking several hundred yards, negotiating
revolving doors while carrying luggage,
and two escalators. Once you have your
ticket, getting to the gate involves three
escalators, four moving walkways, and an
underground corridor that has varying
mood lighting and sound, supposedly to
invoke images of a thunderstorm. Just
what I want – dimming lights when I am
trying to replace items in my pockets from
security, and see how to step on and off of
moving walkways.

Modern is not always better. Perhaps I
am becoming set in my ways, but new is
not always better. As another example,
what happened to good old-fashioned
humor on television? When I turn on the
television, I want entertainment. I miss
Seinfeld. The other night on TV, I had my
choice of several reality dramas. I haven’t
figured out the reality of these shows.
Personally, I have never been (a) stranded
on a deserted island trying to survive with-
out fire, or (b) traversing the African con-
tinent without enough frequent-flyer
points to get a plane ticket home.

Somehow, knowing there is a film crew
and a sound team supporting me would
take the actual survival drama out of the

situation. I can’t figure out why they don’t
just break one of the cameras and use the
metal pieces (or even the batteries) to cre-
ate sparks and discover fire!

Unfortunately, Seinfeld probably won’t
return. I’d settle for a good rip-off. It
seems, however, that the trend is more and
more absurd reality television. Perhaps
what we need are topics that are more
realistic. How about a reality show that
shows the real world? I have an idea for a
show about reality computing: It would
have scenarios that include the following
computing classics, guaranteed to provide
huge ratings.

First, how about being able to vote off
end-users who can’t seem to agree on
requirements? Once a week, we get the
developers together, and they get to write
down the names of the most unsupport-
ive and unresponsive subject matter
expert (SME). The SME voted off would
have to work for six months testing the
effectiveness of varying brands of odor
eaters in Iraq.

Next, by the same token, end-users get
to vote off the developer who added the
most useless feature to their system.
Those voted off would be forced to work
converting legacy Fortran.

OK, you’re right. These ideas are too
realistic. Reality shows require some
believability, but not too much. What we
need are ideas that would provide some
reality, but are enough removed from actu-
al life to entertain and amuse. I have a cou-
ple of ideas that I think would be funny,
but non-realistic enough to not only enter-
tain and amuse, but also draw high ratings.
In my first idea, developers are mandated
to develop systems using a new language –
but no (or few) compilers, tool sets, or
trained personnel would be available.
There would be incentives to develop sup-
porting toolsets and compilers. Just about
the time supporting software and person-
nel become available, tell the developers,
“Just kidding,” and entice them not to use
the new language. In fact, let them devel-
op mission-critical software with lan-
guages that perform no range checking,
parameter checking, type checking, or
memory protection. Imagine the hilarity
and laughs from this hypothetical sce-
nario! There would be a million laughs a
minute as developers scramble to track

down invalid pointers. The thrill of locat-
ing that last uninitialized variable while
delivery deadlines slip and costs rise would
keep viewers glued to their seats.

For my second idea, let’s take obsolete
standards for developing software and
update them so they actually work. Make
them a new standard. Then just as the new
standard becomes useful, remove it as a
standard and tell developers to simply use
best practices. Don’t define what the best
practices are. Imagine the chaos and the
chortles that will result! In fact, to really
facilitate the humor, we could cut funding
to organizations that provide software
support and quality improvement.

In my third idea, top-level managers
are tantalized with new processes that
aren’t processes. Let’s give these almost-
processes appealing names like “Flexible
Methodology” or “Maximum Program-
ming.” Show policy makers that these
almost-processes work (and work well) for
smaller, non-critical applications. Then,
tempt managers to apply these almost-
processes to large-scale mission-critical
programs. It is always a real side-splitting
laugh to watch folks learn over and over
that, on large-scale mission-critical sys-
tems, you can’t skip things like formal
interface design, configuration manage-
ment, documentation management, quali-
ty assurance, and requirements engineer-
ing. The hysterical guffaws from applying
lightweight processes and free-fall coding
practices on complex systems guarantees a
laugh riot every minute!

I don’t know about you, but I think the
above scenarios – which, granted, are
quite far-fetched and unrealistic – would
provide just about the humor television
needs. In fact, after 31 years of develop-
ing, managing, and supporting Depart-
ment of Defense software, these ideas
make me laugh all the time.

Oh yeah. We need a name for our real-
ity show. Funny, the only name I can come
up with is “Survivor” – but it’s already
taken.

– David A. Cook, Ph.D.
The AEgis Technologies Group

dcook@aegistg.com

You Want Reality Computing?
You Can’t Handle Reality Computing!

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Reality Computing
	Handheld Computing
	How to Secure Windows PCs and Laptops
	How and Why to Use the Unified Modeling Language
	Effective Practices for Object-OrientedSystem Software Architecting

	Best Practices
	Identifying Your Organization’s Best Practices

	Software Engineering Technology
	Application-Specific Knowledge Bases

	Open Forum
	Process Therapy

	From the Sponsor
	From the Publisher
	Coming Events
	Web Sites
	Online Articles
	BackTalk
	Back Cover

